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ABSTRACT

The viscous characteristic analysis for supersonic chemically reacting flows

as reported in NASA CR 111783, has been extended to include provisions for

analyzing embedded subsonic regions. This report describes the numerical

method developed to analyze this mixed subsonic-supersonic flow fields. A

discussion of the boundary conditions related to the supersonic-subsonic

and subsonic-supersonic transition as well as a heuristic description.of

several other numerical schemes for analyzing this problem is included. An

analysis of shock waves generated either by pressure mismatch between the

injected fluid and surrounding flow or by chemical heat release is described.

• -..
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LIST OF SYMBOLS

C = C * .* C specific heat

J = 0 for two dimensional flow,
1 for axisymmetric flow

L* -= reference length

Le = Lewis number

M = Mach number

mi  = molecular weight of ith specie

n = distance normal to streamline

P = P*/puO2 pressure

Pr = Prandtl number

q = q*/u, velocity

R. = mix.ture gas constant

R = free stream Reynolds number
e 110O

R0  = universal gas constant

S1,2,3 i = forcing function terms

T = T /TO temperature

W = average molecular weight of mixture

i = chemical production terms

* *
x =x /L axial distance

y = y /L radial distance

ai = mass fraction of ith specie

S .= ratio of specific heats

e = flow inclination relative to axis.
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LIST OF SYMBOLS (Continued)

p = p /p density

f = Mach angle

= viscosity

= stream function

* = dimensional variables

= free stream conditions (dimensional)

f = frozen state
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I. INTRODUCTION

One of the interesting phenomena produced by combustion in a supersonic flow

is the possibility of producing transition from supersonic to subsonic flow

due to the heat addition. This transition has been analyzed in the past for

the case of one dimensional flow, however, a more complex flow field is usu-

ally generated in a supersonic combustion process controlled by mixing. In

the flame zone of this flow, where the static temperature of the gas in-

creases, the local Mach number can decrease, even if the static pressure de-

creases, because the value of the local speed of sound increases. Therefore,

a transition from supersonic to subsonic flow can take place in a localized

region of the flow where the pressure changes slowly and the region can be

completely surrounded by supersonic flow.

The transition from subsonic to supersonic flow can occur through several

mechanisms; when the flow surrounding the subsonic region is cooler than the

flow in this region (because combustion takes place only in a limited region

of the flow), then, because of mixing of the combusted gases with the surround-

ing air, the temperature of the gas in the-subsonic region gradually decreases

and the flow can become supersonic without pressure variation, or even with a

small static pressure raise. The second possibility is that the stagnation

temperature remains roughly constant but the pressure decreases, the flow

accelerates and again becomes supersonic. The subsonic flow field region is

essentially the opposite of the classical transonic region about airfoils,

where the flow becomes locally supersonic, because the pressure decreases and

then again becomes subsonic downstream, usually through a shock, and a local-

ized region of supersonic flow is embedded in a subsonic stream. Extensive

discussions on the existence of transonic flows without shocks have taken

place in the past for this type of flow. It is now well recognized that smooth

solutions (without shocks) are special solutions of this transonic problem and

require special boundary conditions.

The possibility of transition from supersonic to subsonic flow.due to com-

bustion has been recognized in the past. In Reference (1) this possibility
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was discussed qualitatively and some of the important aspects of the presence

of such subsonic regions were described, however, a detailed treatment of

this problem is still lacking. A quantitative understanding of the physical

aspects of such a transition are of primary importance for the development of

a practical scramjet engine, in view of the fact that the efficiency of the

engine, at flight Mach numbers of the order of 6 to 8, depends strongly on

the value of the static pressure and local Mach number at which the heat ad-

dition takes place. High efficiency and high specific impulse requires a

low local Mach number where heat is released due to chemical reaction. If

the Mach number before combustion is low, during the combustion process sub-

sonic regions are formed, even if the pressure locally does not change be-

cause of the increase of the local speed of sound. In addition, the scram-

jet must be able to operate at lower flight Mach number than design. For

these conditions, large regions of the burner have subsonic flow.

ATL has developed for NASA in the past, methods where the flow fields of :

supersonic streams with chemical reactions can be analyzed (Reference 2).

Such numerical methods permit analyzing the flow between discontinuities,

provided that the entire flow remains supersonic, in view of the fact that

such a method uses "viscous characteristics" as first described in References

(3) and (4). In the present phase of the work, a numerical method capable of

determining the formation of combustion shocks has been developed. In addition,

the possibility of numerically determining the region of transition from

supersonic to subsonic flow, and then subsonic to supersonic as can occur

in the flame has been investigated.

The numerical investigation of a transonic problem, as described requires the

development of a numerical scheme, valid in the transonic region, that can be

coupled with the "viscous characteristic program". In addition, it requires

a clear understanding of appropriate boundary conditions for the subsonic

regions. A problem similar to the problem related to the existence of smooth

subsonic-supersonic transition over a two dimensional profile near M=1, exists

for this flow; therefore, the first step in this effort is to generate a clear

understanding of the boundary conditions related to the transition problem.
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II. BOUNDARY CONDITIONS RELATED TO THE TRANSITION FROM SUBSONIC TO

SUPERSONIC FLOW AND FROM SUPERSONIC TO SUBSONIC FLOW

In the combustor of a scramjet engine, the flow downstream of the burner is

supersonic, and the flow reaching the burner is also supersonic, therefore,

any subsonic region generated locally by combustion is contained between

these two supersonic regions. Consider first the case in which the subsonic

region is completely imbedded in a supersonic stream, as shown in Figure (1),

AIR

AIR - M>I

HIGHEG 
R TEMPERATURE

AIR - M> I

SHOCK

FIGURE 1.

The hydrogen from the injector mixes with the air outside and combustion

takes place; the pressure rises because of the decrease in density of the

stream due to combustion; the speed of sound increases, and in this high
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temperature region the flow can become subsonic. Since the duct in which

burning occurs diverges and the downstream pressure is much lower than the

pressure at the injector face, the flow must again cross a sonic line.

If the temperature in the high temperature zone is higher than the average

temperature after combustion (case of <1), the flow outside the high tem-

perature region will remain supersonic. Therefore, the shape of the sonic

line is as shown in Figures(1) and (2). The static pressure distribution

between A and B does not uniquely define the flow and the line M=1 is not

a line of constant static pressure temperature, and velocity as in the case

of the wing, because the stagnation temperature changes from point to

point. Hence, several different pressure distributions are possible de-

pending on the amount of diffusion and chemical reaction taking place be-

tween A and B. The pressure can first increase and then decrease, can

remain approximately constant, can continuously decrease, or can slowly in-

crease. In this last case, the variation of theaspeed of sound due to dif-

fusion must be larger than in the other cases.

SONIC LINE

M I A M<I B M>I

FIGURE 2.
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It is not clear 6 priori, if the presence of a closed sonic line in the

flow, as shown in Figure (2) is physically possible. The boundary conditions

required in order to obtain such smooth conditions must be investigated first.

In order .to understand the physics of the problem it is convenient to analyze

the problem in two steps. The first step is related to the transition from

subsonic to supersonic velocity. Then we can transform the problem in such

a way that the properties of the subsonic region can be controlled indepen-

dently of the supersonic region, as shown in Figure (3). We assume that

flow 1 can be controlled independently of flow 2 and that flow 1 is ini-

tially subsonic.

C

M2 >I

A

MI<I Y(X)

FIGURE 3-
FIGURE 3.
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The simplest case of such a flow occurs when stream 1 is uniform and initially

subsonic (one dimensional) at the exit of the jet and stream 2 is supersonic.

If we neglect transport properties and assume both flows to be inviscid, the

flow properties as specified along the line, AC yield a unique relation be-

tween the pressure and the angle of the streamline AB, where CB is a charac-

teristic line emenating from C. The unique relation between p and 0 cor-

responds to a unique relation between p(x) and y(x) since

x

y = tan 6 dx

0

A similar relation can be determined for streamline AB. For example, if

we assume that the pressure in region 1 is independent of y (one dimensional

flow), we have a simple relation between y and p given by the continuity

equation. Thus, a step by step calculation can be performed where at each

step Ax between A and B, the variation Ap in the step can be assumed as a

parameter and a single calculation can be performed (Figure 4). The equa-

C

S.L.y

aI

Ax

FIGURE 4.
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tion of characteristics applied along Cb yields a relation between pb and

eb •

For a two dimensional flow

2 (Pb-Pc) (Bb - ec) (1)

Y (Pb+Pc) cos sin -

where

tani= 2 (tanib + tanpc)

Then, for a given value of Ap (i.e., pb-Pa ), Pb is given and eb is calcula-

ted. Then, Ay is determined from

S(tanea+ taneb) Ax (2)

The one dimensional relation yields
1/2

Pa - ()
b= (Pa po r (3)

Ya Pb j

Pb Y

where po is the stagnation pressure of stream 1.

Only one value of Ap satisfies Equations (1), (2) and (3). Thenthe varia-
tion of y as a function of x can be obtained. However, in the region where

M1 becomes equal to one = 0. Then a solution can not be found un-I o dp M=1
less 6 - 0 and - tends to zero for the external flow in the region where
MI - 1. If this does not occur, we have a "choking" condition and the ini-

tial subsonic flow distribution assumed in Figure (3) is not physical.
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A "choking" condition can be found independently of the approximation used

in the analysis of the subsonic flow. The physics of the simple case shown

in Figure (3) is clear. The pressure at station A has been assumed arbi-

trarily. If choking occurs, this implies that an incorrect value of the

pressure at A has been assumed. If we change the value of M1 at A and,

therefore, the corresponding value of pA, the shape of the streamline AB

changes. If the value of 0 of the streamline AB at the choking point is

negative, then the mass flow of stream 1 must be decreased; hence pA for

a given po must increase. This change tends to increase the value of 0 at

the choking region. Therefore, by an iterative process the value of pA
that gives a physical solution can be determined. The problem is sub-

stantially more complex if flow 1 is not assumed to be one dimensional,

and transport properties and chemistry are included in the analysis, as

will be discussed later on. However, the controlling mechanism is the same.

For any given initial flow distribution in the supersonic region, and given

stagnation conditions and channel shape of the subsonic flow, a single solu-

tion can always be found that permits the subsonic flow to cross.the MW1 line,

which corresponds to a given value of the static pressure at A. Therefore,

the correct boundary conditions for the problem requires a selection of the

pressure at A that avoids "choking", and the assumption that the downstream

pressure is sufficiently low. Thenthe initial flow properties along AC

and the geometry defines the problem.

Let us now consider the case depicted in Figures (1) and (2). In this case

the flow is initially supersonic, therefore, the flow field in front of the

sonic line is completely determined by the initial conditions. In Figure

(5) the flow along the line a is given. Then, the flow along line b is

uniquely determined. If the flow becomes subsonic due to chemical reaction,

the flow properties along the sonic line S are completely determined; therefore,

only one solution can be found that gives a smooth transition from supersonic to

subsonic flow and a unique flow can be determined along line S where M=1 hav-

ing an embedded smooth subsonic region. Hence, the possibility of chang-

ing a parameter, equivalent to changing the value of the pressure PA of Figure
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SONIC'

LINE

C_

M>I ' M<I

C, \

a b

FIGURE 5.

(3),(in the case that choking occurs because of the downstream conditions)

is not available for this flow. However, if downstream, the flow Mach num-

ber tends to increase and the subsonic region tends to decrease, then the

sonic line crosses all the streamlines and closes as shown in Figure (6),

SONIC
LINE

dM 0  dM>
ds ds

FIGURE 6.
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Therefore, the possibility of having the choking condition described be-

fore, still exists. For some conditions, the flow cannot undergo transition

from subsonic to supersonic because the flow is choked; therefore, some modi-

fications must be introduced upstream to change the initial conditons of the

subsonic flow. The only existing mechanism for this adjustment is the forma-

tion of a shock. The choking condition produces a disturbance that moves up-

stream of the sonic line (figure 7) forming a shock. The transition from

supersonic to subsonic then occurs by means of this discontinuity as shown in

Figure (7).

The position and shape of the shock depends on the choking conditions, which

are dependent on the flow properties along AB. Then, in the general case,

for any given flow distribution along AB, the transition from supersonic to

subsonic occurs through a strong shock (subsonic flow behind), the position

of this shock being highly dependent on the flow properties in the super-

sonic region outside the choking region (region CC of Figure 7).

Similarly to the transonic case, a smooth transition can exist for specially

selected boundary conditions and can be calculated by specifying only a part

of the flow properties along the initial station AB, for example, along AD

of Figure (7). Then, the flow properties along DB can be determined by an

inverse process where the transonic region CC is determined first and the

region DCCB is determined later on.

The determination of the shock cannot be obtained by a direct (marching)

calculation as it depends on the downstream flow conditions; it should be

obtained by a procedure similar to that used for transonic flow analysis.

The procedure that appears the most feasible for this problem is an itera-

tion procedure where a smooth transition from supersonic to subsonic is

assumed first and a "choking" error is determined at the subsonic to super-

sonic transition in terms of the amount of mass flow that cannot cross the

region of M=1. Then,a shock position, s, is assumed ahead of the first

transition. This position, s, defines a new flow field . Such a flow

field defines a new error associated with choking at the second transition.
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SHOCK

M>I SONIC LINE

-SMO OTH
A_ g SONIC LINE

MATCHING

M>I

M>I
C+ CHARACTERISTIC

D
B

FIGURE 7.
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The error obtained is smaller than the previous error. A program that can

perform this type of analysis and perform these iterations can be developed,

however, it is not part of this effort. The effort supported by NASA in the

mentioned contract is limited to the development of a program that analyzes

only the inverse problem. This analysis is described in detail in the follow-

ing sections.
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III. GOVERNING EQUATIONS

The analysis developed for calculating the subsonic region of the flow must

be consistent with the "viscous characteristic" method employed in the

supersonic region and must be capable of analyzing a viscous, reacting flow

with both lateral and transverse pressure gradients. The pressure p and

flow inclination e have been selected as independent variables since the

equations written in terms of p and a do not explicitly contain the entropy

as a flow variable, which can have extremely large gradients in the combus-

tion region. Use of equations written in terms of velocity components,

could lead to numerical difficulties regarding mesh size in the combustion

zone since the entropy gradients would have to be evaluated by means of

finite difference formulas.

The governing equations .are the well known "viscous-inviscid" equations em-

ployed in higher order boundary layer and viscous flow field analyses

(References 5 and 6) with the finite rate chemistry terms included. The

equations are as follows:

Global Continuity:

a(Pq) + pq -+ sin e = 0 (4)
as an y

(J=O for two dimensional fow and J=1 for axisymmetric flow)

S-Momentum:

pq -+-= [ + + cos 6 aq1 Se (5)

N-Momentum:

pq2 a +e = 0 (6)
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Energy:

aT ap 1
Cp pq as q as Re(y -1)M2

SpL aTT act
an Pr an y Pr an Pr an pi an

+ (Y.-1)M2 PO() j - S = 2 i

Species Conservation:

ai i a Lei/"ai J L e aai
as Re an Pr an y Pr an

(8)

+ = S +
i 3 ik1

State:

W pT
w p(9)
y M2W

where -1

1
m
i

These equations are written in an intrinsic coordinate system with s along

and n normal to the streamlines. We have assumed that transport effects

are produced only by gradients normal to streamlines.
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IV. HEURISTIC DESCRIPTION OF SEVERAL NUMERICAL SCHEMES FOR ANALYZING

SUBSONIC ZONES

A marching technique (as described in Section II) may be developed using a

one dimensional approximation for the subsonic stream. Such an analysis

is described in Reference (7) for analyzing supersonic air-ejector flow

fields. In using a two dimensional description of the subsonic stream,.

the mathematical nature of the problem changes. In this representation,

the normal momentum is introduced, an equation not accounted for in the

one dimensional approximation. The governing flow equations in the super-

sonic region of the flow field are hyperbolic-parabolic in nature and hence

may be solved by a marching technique; but, in the subsonic portion of the

flow field, the flow equations are elliptic. This situation presents

significant difficulties in attempting to analyze viscous, combusting flow

fields, since both mixing and chemistry are analyzed numerically by marching

along the flow streamlines.

While a marching scheme for an elliptic system yields an improperly posed

problem mathematically, it has provided solutions of the inverse blunt body

problem. Hence, a marching type numerical method was envisioned as a pos-

sible approach to the solution of this problem. Regarding such a numerical

approach, (Reference 2), "fundamental questions arise with respect to the

uniqueness and existence of a solution and with respect to stability and con-

vergence of calculated procedures." Then, the possibility of obtaining

physical solutions to elliptic problems by a marching scheme is highly de-

pendent on the scheme utilized.

A marching scheme was developed employing the governing equations in finite

difference and using the numerical scheme described in Appendix I. This

scheme for analyzing the subsonic region was incorporated into the "viscous-

characteristic" program and test cases were performed to analyze mixed subsonic-

supersonic flow fields. Both "direct" problems (where an upper subsonic

boundary shape was iterated upon to yield a lower subsonic boundary that

satisfies either a wall, axis or characteristic compatibility constraint)
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and "inverse" problems (where the upper subsonic boundary shape is pre-

scribed, yielding a wall shape at the lower subsonic boundary) were at-

tempted. In all cases that were run (both of the "direct" and "inverse"

type) oscillations developed in both the pressure and flow deflection

profiles after marching several axial stations which grew in magnitude

and caused the program to terminate. It was felt that a polynomial repre-

sentations for the pressure and flow deflection in the subsonic region

might alleviate the instabilities obtained with the finite difference ap-

proach. This polynomial scheme is described in Appendix II. This

method permits the calculation of a mixed subsonic-supersonic flow fields

by a marching technique employing "viscous-characteristics" in the super-

sonic portion of the flow field and a multi-strip integral technique for

the subsonic portion. A simple two dimensional test case was run employ-

ing the initial profiles shown in Figure (8), with a wall producing a

rapid expansion imposed as an upper boundary, as sketched in this figure.

A solution was sought that would accelerate the flow producing an all

supersonic flow field downstream of the initial station.

For this test case, the medium was air, and the viscosity was set to zero,

to simplify understanding the elemental physics involved. The flow is,

however, rotational and non-homentropic. The matching point selected on

the initial profile was at a Mach number of 1.03.

The marching scheme, as described ir Appendi.x II, entails an iteration for

the pressure at the matching point, the correct pressure being the one that

passes the appropriate value of mass flow. Cases 1, 2 and 3 are distinguished

only by the differences in the initial flow deflection (e) profiles. As

indicated by streamwise pressure and Mach number variations at the axis

Figure (9), the flow solutions differed substantially for these cases. In

case (1), the flow accelerated to a local minimum section which was ap-

parently larger than the critical area required to accelerate the flow to

the supersonic branch, hence the flow decelerated downstream of this station.

In case (2), the flow smoothly accelerated from subsonic to supersonic, while

in case (3) the flow reached a station where local choking occurred. Hence,
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only case (2) could be analyzed by a direct marching approach. Case (1)

cannot be handled by a direct marching technique since the downstream

conditions are not known a priori while case (3) requires the addition

of shock waves to adjust the incoming mass flow. Figure (19)indicates

M, P and a profiles at several axial stations for case (2).

When the polynomial method was applied to the analysis of viscous-combusting

flow fields the following difficulties were encountered:

(1) Both the pressure and flow deflections exhibited oscillations

at the upper and lower bounding subsonic streamlines which

tended to rapidly grow in magnitude. It was found that

these oscillations were strongly a function of the size of the

marching step in the streamwise direction; the larger the

axial step size, the smaller the amplitude of the oscilla-

tion. This is analogous to the numerical difficulties en-

countered in the blunt body problem, but cannot be simply

resolved since both the chemistry and the mixing impose

limitations on the allowing axial step size.

(2) When one of the bounding streamlines was a wall, it was

found that the flow deflection polynomial e(y) could not

physically describe a subsonic-supersonic or supersonic to

subsonic transition at this wall.

(3) In attempting to run problems of the "direct" type, local

choking consistently occurred causing the program to termi-

nate.

On the basis of the results obtained with both numerical schemes developed

the following conclusions were reached:

(a) A marching scheme employing a finite difference approxi-

mation of the governing equations (Equations 
4 - 9) of
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all grid points appears to be unstable for both

direct and indirect problems.

(b) A marching scheme employing polynomial expressions

for the pressure and flow deflection yields oscilla-

tions at the bounding streamlines; cannot represent

bounded flow fields with subsonic flow adjacent to

one of the boundaries and yields local choking for

direct problems.

The numerical scheme described in the following section yields a workable

method for problems of the inverse type, for embedded subsonic regions ad-

jacent to walls.
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V. NUMERICAL PROCEDURE FOR THE ANALYSIS OF EMBEDDED SUBSONIC

REGIONS

A numerical method of the inverse type has been developed for the analysis

of embedded subsonic regions adjacent to walls. A typical flow field is

depicted in Figure (11).

Combustion
Region

Air

M>1 M=1

H2  M<1

- ----- I 11FM>E 1 .

FIGURE Il.
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The flow field contained between Station (1) (initial profile) and Station

(2) is entirely supersonic and hence may be analyzed by "viscous-

characteristics" as described in Reference (2). It should be pointed out

that the "viscous-characteristic" program as described in Reference (2)

was catered to analyzing expanding supersonic nozzle flow fields. In this

current effort, combustion generated compression fields are being analyzed,

hence major changes have been incorporated into the basic "viscous-

characteristic program. These changes include the capability of calculat-

ing the initial mixing region including the determination of an initial

underexpansion shock; carrying shocks as discrete discontinuities in the

flow field; the detection and calculation of envelope shocks produced by

the coalescence of compression waves; and grid spacing logic for analyzing

a mixing region of small transverse extent in a nonuniform supersonic flow

field. These revisions will be described in later sections of this report.

Consider the flow field at Station (2), where the program has first en-

countered a grid point with a Mach number M < 1.01. At this station, the

lower wall (AB) becomes the lower subsonic boundary and a slightly super-

sonic streamline (FG with M - 1.1 to 1.2) becomes the upper subsonic bound-

ary, as depicted in Figure (12)

Upper '
Subsonic --
Boundary l-

S.- Sonic Line

,-i i - K

i ~7 Lower Subsonic
Boundary

FIGURE 12.
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The shape of the upper subsonic bounding streamline (F-G) is specified as

the polynomial.

-3X XYFG A + BX + C + D - ----- (10)FG 2 6

where X - XF

The first four coefficients in this polynomial are related to the streamline

shape at F as follows:

A = YF (11a)

B = (y) = taneF  (lib)
dxF F

2 e
C=( s ) (11c)

dx2 F cos F

D 3  e + 3tane (e )2
= =( 4 (ld)

dx cos4eF F

The quantities s and ess can be obtained from the y derivatives of flow

quantities at F. Consider the following system of equations;

(M2-1) 0 0 (yPM 2) Ps A

o 1 (yPM2 ) 0 P n 0
n =(12)

sine cose 0 0 es  Py

0 0 sine cose en  e

which are modified continuity equation, normal momentum equation and the

geometric relation 3/ay = cose a/an + sine a/as applied to both P and e.

The righthand side terms may be evaluated at F since they consist of dif-

ferentiation in the y direction only. (A is related to the mixing and
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chemistry terms as described by Equation (AI-3). A derivation of the

modified continuity equation may be found in Reference 2). Solution of

this system of equations then yields es, Ps, en and Pn at point F. Ex-

pressions for as and Ps are given by Equations (AI-1) and (AI-2) in

Appendix I. Then,

A- (M2 -1) P
n  2 (13)yPM

and

P - yPM 2Os (14)

Consider a/an of the modified continuity equation, a/as of the normal mo-
mentum equation and a/ay by both es and en. This yields the following
system of equations:

(M2-1) 0 0 (yPM 2) Pns a

1 0 (yPM2) 0 ens b

(15)
0 cose sine 0 ess c

0 sine 0 cose e d

where

a = An - 2MM n Ps - (yPM2 )n en (16a)

b = - (yPM2)s es  (16b)

c = - (es) (16c)
y

d = - (e ) (16d)

This system may be solved for 6ss yielding
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ess = (-A cose+2coseMM Ps+(YPM 2)ncose(e )

(-yPM2)sCos2e(M2-1)es+(yPM2)sine(eS ) (17)

(-yPM 2cose( n) )/(yPM2[M2cos2 -1])
y

Note that a/ay of es and en are obtained numerically by obtaining these

quantities at grid points above and below F, while An is approximated by Ay

consistent with the assumption in the governing equations that for the

transport terms a/an a/ay.

With the upper boundary streamline now specified (if we do not impose higher

order terms), the pressure distribution could be obtained along this stream-

line independent of the subsonic flow field, if there were no viscous effects.

Due to the presence of viscosity, the following iterative procedure is used

to calculate the combined flow fields.

The lower wall is prescribed by the polynomial

C 2  3

YAB = a + b x + 2 6 (18)

where a, b and c are prescribed by the relations (11a), (11b) and (11c) pre-

scribed at point A. The term d is the parameter iterated upon in the problem;

if a value of d is assumed, the lower wall AB is specified. The pressure

distribution in the y direction is prescribed by a parabola

P(y) = a + b y + c y (19)

and initially (when first encountering a subsonic zone), the existing pres-

sure distribution must be fit with this parabola to avoid spurious pressure

gradients in the subsonic region due to "wiggles" in the actual pressure

distribution.

In determining the flow properties at the next axial station, the axial step
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ax taken is governed by the allowable stability criterion described in

Appendix III), the supersonic portion of the flow field (points above F')

may be calculated by "viscous-characteristics". With the flow deflection

known at point F', the pressure is obtained using the compatibility relation

B1 (pF'PK) F K) + 'j sine + B2 + B3] B4 Ax=0 (20)Y F'K

applied along F'K where

B = (sinucosl(
1 yP , (21)

Sl (y-1)S 2  W S3i
2 pq2 yPq pqi m

[1 aT 1 (23)
3 T aschem i as m chem

Ssin 24
B4  cos(e-i) (24)

Note that the chemistry is uncoupled as explained in Reference (2) and the

term B3 may be evaluated along the flow streamlines prior to the computations

of the fluid mechanical properties.

With the pressure gradient and streamline location known, the velocity, tem-
perature and species mass fraction may be obtained at F' (or any mesh point I)
by using an explicit finite difference formulation of Equations (5), (7) and

(8).

2(PI - PI)  2S As
qj = q + 1(25)

I q p Plql+pyqi pqi+p q

where S1 is approximated by derivatives in the y direction

S1 T [q + J cose -y]/Re (26)
ayY
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and the derivatives 2R and 2- are evaluated at the grid point I by the non-
ay y2

ay
centered finite difference formulas

AY q (Ay  AY2) -
q+1 Ay2  Ay2  Ay (27)

ayI AY + AY2

and

2 2 [ql+l Ay Ay 2  -1 Ayl AY2]

(4)= (28)
ay AylAy 2

where Ay1 = Y - YI-

and Ay2 = YI+1 - YI

The temperature T is determined by the finite difference relation

aT 2 (P1 - PI) 2 S2  s
TY = TI + (Ts) As + 2I - + (29)as chem C PI + Cpi PT (PqCp) + (PqCp)

where
C a2T 1  a2 T cose T e aT 1i

= + s + J () + pi) z C a
ay

2  (30)
+ (y ,-1) M2 (-) /[Re (y=-1) M2

All first and second derivatives are evaluated as described by Equations (27)

and (28).

The ith species mass fraction ai is determined by the finite difference rela-

tion
2 S :3 as

a + a ) + (Pq+ ) (31)
i as. I As (p q+pq T)cmchem
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where

S = T [e i cose e /Re (32)
3 T -2 y Pr a

.3 ay.

The remaining properties are made as follows. The average molecular weight

is obtained from

W = [ ( (33)
m.

Ro
hence the mixtures gas constant is R = From the equation of state, the

density is

W y M2
S= W (34)

T T

The specific heat (frozen) is expressed by

ahi(T)
Cp = Cpi(T) ai = (ai (35)p pi ~ ii aT

where C (T) is a specified function of temperature, thermodynamic data

being tabulated from Reference (15)..

The ratio of specific heats is

C
Yf Cp-R/C(36)f ;C -R/C

p p0

and the Mach number is given by

Mq YR
Mf - (37)

The derivative Py at F' is computed from Pn and Ps, where Pn is evaluated

using the normal momentum equation (Equation 14). es at F' is obtained from

the relation

e = cos3eF [C + D (XF,-xF)] (38)
sF ,
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while Ps is evaluated by a backward difference.

The P(y) polynomial at the new axial station A'F' is then obtained employ-

ing a simple iterative procedure. A value for Py at A' is assumed (for a

first guess, the value at A is used), and the polynomial coefficients a, 6

and c are evaluated using PF" PYF' and PYA' This yields the pressure at

A', hence all flow properties can be evaluated using Equations ('25) - (37).

Then, the normal momentum equation is used to obtain Pn and combining this

with Ps an alternate value of Py is obtained at A'. The value of Py ini-

tially assumed is then perturbed and the process repeated until the two values

of Py agree to within a specified tolerance. Then, employing the poly-

nomials at both stations, the pressure gradient is specified for each stream-

line in the subsonic region Equations (25) - (37) then yield flow proper-

ties at all the grid points. This process is repeated for subsequent axial

stations until Station II is reached. Station II is either a specified

number of ax steps from Station I or is the station at which the Mach number

along the upper bounding streamline falls below some prescribed value.

At Station II, the mass flow contained between the upper and lower subsonic

boundaries (GB) is evaluated as follows:

I II

F G

R

S

FIGURE 13.



TR 169 Page :31

Referring to Figure (13), let RS denote the streamline below FG. Along RS

YS = R + (taneR) (xSXR cos ) + (R (39)

tane = taneR + (Ec- ) (XS-XR) +~ (xS-xR) 2  (40)

while between G and S

1+J 1+J

+G S +  ((pqcose)s+(pqcose)G) S 1+G (41)

where G =  F and S = *R

Equations (39), (40) and (41) may be solved for yG' eG and E. This pro-

cess is continued down to the wall (point B of Figure 12) yielding a

value of yB different than the value of yg obtained using Equation (18).

A value d is obtained from Equation (18), which would adjust the lower

wall shape so that yB=YB . The numerical procedure is restarted from Sta-

tion I with a new value of d' chosen such that d' d+d . The iteration

procedure for d appears to be self converging. Note that in repeating

the calculation of the subsonic flow field ABFG with a new lower wall shape)

the supersonic portion of the flow is not recalculated. Flow properties

along FG are stored so that the derivatives can be made for evaluating the

shear terms. It is assumed that the slight perturbations in the wall shape

AB occurring in the iteration process do not influence the value of the

terms stored along FG. Having converged on the lower wall shape, a new

upper matching streamline is determined at Station II based on the Mach

number profile. Then, the calculation proceeds from II to III as described

above. This process is repeated until the sonic line closes and the entire

flow field is again calculable by "viscous-characteristics".
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VI. SHOCK PHENOMENA

Numerical techniques have been developed for analyzing shock discontinuities

occurring in a viscous combusting flow field. The analysis of higher order

shock structure has been discussed extensively in References (16) and (17).

For the problem under consideration, it appears that the modifications to

the Rankine-Hugoniot relations to include the effects of heat conduction,

viscosity and shock structure (which involve the local shock curvature) in-

volve higher order approximations than the inclusion of these terms in the

characteristic relations, hence the shock model employed uses the standard

Rankine-Hugoniot relations, with the chemistry frozen across the shock.

The flow may be nonuniform on both sides of the shock and "viscous-

characteristics" are used in performing a shock point calculation, which

takes the transport and chemistry terms into account.

A. Shock Point Calculation - Assume a coordinate system oriented

along (t direction) and normal to the shock surface (n direction) as shown

in Figure (14). The angle beta ( ) is the direction cosine of the shock

with respect to the Cartesian direction x, and u and v are the velocity com-

ponents in the n and t directions.

n = - sin i x + cosai (42)

t = cosi x + sinaiy (43)

V = - u n + t = ui + viy (44)

Y

n = sin P x + cos/9 iy
A AA

, t = cos/ t + sin/ f
tvt M M xA + M

M~vt Moo= n n  Mt

FIGURE 14.
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The Rankine Hugoniot relations take the form

Continuity: lU= p2 2  (45)

Normal Momentum: P1 P = P2  2U2  (46)

Tangential Momentum: V v (47)t t

Energy: H = h + V2 = constant (48)

where
n

h = l aihi(T)
i=1

State: p = p(P, T, ai)  (49)

The a.'s are the mass fractions (and remain constant across the shock) and
h Ith

hi's the enthalpies of the i chemical species. Employing the jump rela-

tions for a given shock angle and upstream conditions requires an iteration

process since the mixture is calorically imperfect.

Let 1 designate upstream conditions and 2 downstream conditions. To solve

the jump relations knowing conditions at 1, a value for '2 is assumed. The

density using Equation (45) p2 is computed; P2 is computed using Equation

(46) and Equation (48) yields a value for h2 which can be inverted by a

local iteration to find T2, since the composition is assumed frozen. The

state Equation (49) then yields an alternate value for the density. If

this value for density does not agree with that calculated from continuity

to within a specified tolerance, a new value of r2 is assumed and this pro-

cess is repeated until convergence is achieved.

Referring to Figure (15), a typical shock wave calculation is performed as

follows. A value of the shock angle BC is assumed, which locates the point

C. Since properties are nonuniform on the upstream side of the shock, a
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UPSTREAM OF
SHOCK WAVE

IS STR-- -- STREAMLINE

CHARACTERISTIC
BI

C2

iAs SHOCK WAVE
IS-I DOWNSTREAM

A2 OF SHOCK WAVE

-I o DATA POINT
x INTERPOLATED POINT

INITIAL IS-INDEX OF DATA POINT
DATA LINE UPSTREAM OF SHOCK

LOWER SURFACE
OR CENTERLINE

FIGURE 15.
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viscous characteristic calculation yields properties at C1. The jump re-'

lations (Equations 45 - 49) are solved using the determined upstream con-

ditions based on the assumed angle BC. This yields all properties at C2.

Using the deflection angle eC2 calculated from the jump conditions, a

viscous-characteristic calculation performed along (C2-A2) yields an al-

ternate value of the pressure at PC2. The pressures are compared and if the

difference exceeds a specified tolerance, a new value of BC is assumed and

the process repeated until convergence is obtained.

B. Under-Expansion Interaction - The program developed has the

capability of computing the interaction produced by pressure mismatch between

a jet and a surrounding airstream, for the case of an under-expanded jet.

This situation is depicted in Figure (16). It is assumed that during the

under-expansion interaction, the species remain chemically frozen. The ex-

pansion is assumed to be isentropic and the local interaction is two dimen-

sional and inviscid in the limit of vanishing radial distance with respect

to the injector lip.

The basic equations describing thePrandtl-Meyer expansion process are

P/pY = constant (50)

h + V2 = constant (51)

dp+1 d(V2) = 0 (52)
P .

1d ln(P) ± d e .= 0 (53)
Y

For a small incremental step AP, Equations (52, (53) and (50) can be

written

2 2 y P (54)
2 1 -1 P 2 P 1



-i

AIR
UNDEREXPANSION

Mb > I SHOCK WAVE

Pb lj SLIP LINE P+= P+ 8+= e-
S " PRANDTL - MEYER

EXPANSION
M. > I

P. P. >P
J J b

HYDROGEN

FIGURE 16.
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1 n (P /P1) ± ( 2-e) = 0 (55)

P2/py  P 1/p{ (56)

where y is held constant in the integration step, yielding values for V2,

P2' and e2. Then Equation (51) yields h2 and an inversion yields T2. In
this manner, the Prandtl-Meyer equations may be integrated.

Since the flow deflection and pressure downstream of the shock wave and

Prandtl-Meyer are unknown an iteration process is required. A typical in-

teraction calculation proceeds as follows. A shock wave angle is assumed

for which flow properties (P,T,e etc.) are computed downstream of the shock

wave. Equations (50) through (53) are solved using small increments of AP

with the pressure behind the shock as the final pressure and the jet pres-

sure as the initial pressure. If the turning angle for the expansion does

not agree with the flow angle behind the shock to within a specified tol-

erance, a new shock wave angle B is assumed and the process repeated until

convergence is obtained. After this solution is obtained, the initial pro-

file is adjusted by spreading the expansion over a small finite region and

the program marches downstream carrying the shock wave as a discontinuity

surface in the flow field.

C. Shock Coalescence - The presence of significant compression

waves generated either by combustion phenomena or physical boundaries as

shown in Figure (17) requires that the entropy rise associated with the

focusing of these waves be included in the calculation. Since the numerical

scheme follows streamlines, not characteristics, a detection technique

based on pressure profiles must be employed, rather than a crossing of waves

of the same family.

In strictly inviscid computations, detection of coalescence is based on

determining the wave strength associated with the crossing of characteristics

of the same family. However, the introduction of transport phenomena has

the effect of dispersing the wave so as to weaken the usefulness of the above
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- -- SHOCK WAVE

SSTREAMLINERAPID COMBUSTION DEFLECTION
REGION - DEFLECTION

DUE TO COMBUSTION

SCHEMATIC OF STRONG COMBUSTION WAVES

FIGURE 17.

detection criteria. A more practical approach is to locally determine the

shape of the pressure curve once the above crossing has been detected. That

is, a local polynomial of the form

y = a + bp + cp2 + dp3  (57)

is fit using additional data from neighboring points in the region where cross-

ing is detected. Then, the simultaneous vanishing of dy/dp and d2y/dp 2 indi-

cates the presence of a coalesced shock wave. Typical pressure distributions

in the region of strong waves are shown in Figure (18).

The detection procedure is as follows. From data at the initial station the

following equations for waves of the same family are solved for a crossing as

shown in Figure (19).

I tan (e) I = tan (ept)I+ldx C, I dx C, I+1
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Y=abP+ cP +d 3

Y",Y'=O

UP RUNNING SHOCK WAVE

Y=a + bP +cP +dP

S =0

P
DOWN RUNNING SHOCK WAVE

FIGURE 18.
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When a crossing is detected between points I and I+1, a polynomial of the'

form given in Equation (57) is fit using data at points I-i, I, I+1, 1+2.

If an inflection point exists for the above polynomial between I and I+1,

it is determined if the magnitude of the slope y' at the inflection point is

less than a specified tolerance. If so, an embedded shock wave is inserted

between points I and I+1. The shock wave angle is assumed to be average of

the characteristic angles,

B : ((e1-) + (e±+)I+1)/2 (58)

the + sign for an uprunning shock and the - sign for a downrunning shock. The

inserted shock wave replaces the grid points I and I+1. The program allows

for only one embedded shock of a given family, and cannot handle shock cross-

ings or shock-boundary interactions.

INITIAL DATA
PLANE

AX c _

SHOCK LOCATION IF
CROSSING EXCEEDS
TEST

8+1,

REGION PRODUCING WAVES

FIGURE 19.
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VII. SAMPLE CALCULATIONS

Case I: An axially symmetric hydrogen jet is injected into a Mach 2 air

stream as depicted in Figure (20).

___________________________ f-~~------------ ------ I~ -

AIR .25d' 11

H - .375 2.57

MACH 2 INJECTOR (NOMINAL)

MACH 2 NOZZLE (NOMINAL)

FIGURE 20.

Nominal conditions are

Hydrogen injection velocity 6850 ft/sec

static temperature 1900K

static pressure 2 atm
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AIR
P=I 38o
M = 1.9
8=0

e-6*

P-M - 25.5 0
SFAN 31.5

P=2,0=0
M = 1.91

H2

5 /r jet

FIGURE 21.
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Air - free stream velocity 4300 ft/sec

static temperature 1255 0K

static pressure 1 atm

The thickness of the injector lip and the effect of air side boundary layer

leads to the fdrmation of a base region downstream of the injector lip. Due

to the large residence time in this region, combustion is assumed to initiate

here. The pressure mismatch across this finite width region is accounted for

by initiating the calculation a small distance downstream of the injector lip.

as depicted in Figure (21). The flow in the base region is assumed to be in

chemical equilibrium and properties are obtained by assuming a smooth D varia-

tion between the hydrogen and air streams and obtaining the property variations

by mass averaged formulas for the total enthalpy and velocity, with the pres-

sure specified a priori. The program was run a total of 2000 axial stations

(from x = 0 to x = 34). The overall flow field is depicted in Figure (22).

The underexpansion shock is carried as a discrete discontinuity; its inter-

actions with the upper constant pressure boundary (occurring at x = 10) was

performed by a hand calculation. Representative flow streamlines, the iso-

therms T = .5, T = 1.2 and T = 1.5, and the 4 =1 line are also depicted in

these figures. The wave field tends to significantly influence properties

in the combustion zone as evidenced by the closing and reopening of the

T = 1.5 isotherm. For example, this isotherm closes when the initial down-

ward Prandtl-Meyer fan reflects off the axis and passes through the combus-

tion zone (in the region 2 < x < 8) and again closes after the expansion from

the upper surface crosses (in the region 18 < x < 24). The variation of pres-

sure, Mach number and mass fraction of hydrogen along the axis is depicted in

Figure (23). A Ferri-Kleinstein eddy viscosity model was used for the flow

in the potential core (defined by aH > .99) the viscosity varying from

10-4 lb-sec/ft2 at x = .5 to 2.14 * 0-4 at x = 10. Downstream of this station,

the value was maintained at 2.14 * 10-4. Flow properties are tabulated at

the following stations: KOUNT = 0; x = .5

KOUNT = 100; x = 1.297

KOUNT = 500; x = 6,6346

KOUNT = 1000; x = 14.932

KOUNT = 1500; x = 24.97

KOUNT = 1800, x = 30.24
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CASE I,
PR 0 GRAM VI S- CHAR

WITH

EMBEDDED SUBSONIC FLOW

SHOCK WAVES

AND F I N I TE RATE H 2 -A I R CHEM ISTRY

TYPEO-- FF WT--I S-AX ISYMMET R TC ....-......
CHEMISTRY IS FINITE RATE
JET OR-NOZZLE RADIUS (RTH -: .-'... 13000E-01 FT.

REFERENCE CONDITIONS. . . .. ....

---------------------

MACH NO. (EMINF) - .19000E+01. . . ....

VELOCITY (UIN) = .43089E+04 FT/SEC
TEMPERATURE (TIN)-- .12550E+04 DEGREES K

PRESSURE (PRES) = .21160E+04 LB/FT**2
DENSITY (RHOINF) = .54305E-03 SLUGS/FT**3
FROZEN SPECIFIC HEAT RATIO (GAMINF) = .13199E+01
MOLECULAR WEIGHT- (WINF) = .28850E+02 ..-- '-- -

REYNOLDS NUMBER (RE) = .34450E+05
PRANDT-NUMBER--(PR) =r -- o oEo--- . OOOOE +01...

LEWIS NUMBER (XLE) = .10000E+01

OUTPUT HEADINGS

X - X/RTH
Y - Y/RTH- --
0 - VELOCITY/UIN
T-7TEMPERATURE/TIN
P - PRESSURE/PRES

TH -FLOW-DEFLECTION-RADIANS --- ------
EM - MACH NUMBER
GAM-SPEC IFIC HEAT
XMASS - NON-DIMENSIONAL MASS FLOW

PHI---EOUIVALENCE RATIO
W - MOLECULAR WEIGHT

MASS FRACTIONS
ALP(1.)-.H
ALP(2) - 0
ALP(3)-- H20 -

ALP(4) - H2
ALP_(P-s- 0 -O2
ALP(6) - OH
ALP(7) - N2 ---------- ......
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KOUNT= 0

X = .50000E+00

SHOCK TYPE 3 BETA = .662E+00

VISCOSITY = .99380E-04 (LB*SEC/FT**2)

PT. Y Q T P
1 .60 O-OOEO +0 . 15376E 01 15150 E -0 0-- .20000 E 0--

2 .69400E+00 .15376E01 .15150E+00 o20000E+01
3 .76200E+00 .....16489E+01 .--.13700E+00 .14200E+01
4 .85000E+00 .12124E+01 .51400E+00 .14200E+01
5 .92000E+00 ......11076E+01 .95000E+00 .14200E+01
6 .99000E+00 .10384E+01 .15000E+01 .14200E+01
S.I0530ET .94510E+00-- .21000E+01 .14200E+01
8 .11100E+01 .92283E+00 .21600E+01 .14200E01
9 ;11800E+0-- .94262E+00- .19700E+01 .14200E+01

10 .12500E+01 .93400E+00 .14600E+01 .14200E+01
-- .13200E01 . 91937E+00 - .10850E+01 .14200E+01
12 .13900E+01 .91937E+00 .10850E+01 .14200E+01
13 . 13900E O-I---- 0 O01E+O .-- O000E01 .10000E+01-
14 .82500E+01 .10001E+01 .10000E+01 .10000E+01

PT. ALP(1) ALP(2) ALP(3) ALP(4)
1 .11000E-09-----ll000E09 .11 000E-09 .10000E+01
2 .11000E-09 .11000E-09 .11000E-09 .10000E+01

-3- .11000E-09 .O11000E-09 .11000E-09 .10000E+01
4 .11000E-09 .11000E-09 .16300E+00 .34000E+00
b .11T00O0E-9 -- - OOO00E-09 .20800E+00 .18400E+00--
6 .11000E-09 .11000E-09 .23300E+00 .78000E-01
-7 0olO000E-09 .11 000E-09 .23700E+00 , 3000E-0 1
8 .11000E-09 .24000E-02 .21200E+00 .11000E-09
9 .11000E-09 .20000E-02- .14500E+00 .11000E-09

10 .11000E-09 .11000E-09 .52000E-01 .11000E-09

11 .TOE-09 11O0 0 0 E-09- .11000E-09 .11000E-09

12 .11000E-09 .11000E-09 .11000E-09 .11000E-09

.. 0-0 .- E11000E-09 .11000E-09 ... 11000E-09 .11000E-09
14 .11000E-09 .11000E-09 .11000E-09 .11000E-09



20+324782* 80-30O619* OO4K0089L* 60-300011P 00+3OO2C2*
----20387R2*- 80-30O618* 00+.30099 60-300011* 00+3O02C2

20+394882 80-300619* 00+30089L* 60-300011P O0+3QOCV

20+3947882* 90-3006113 00+30089LO 60-300011P 00+3002C2*
2O+38C9L2* 00.3TLO00* 000L9L* 60-30001P* 00+~300191

.O366 -0 0*3S47'E9S * 00*30S'i9L* 20-3000osg 1 030&0Goo8
2O.3S998'2* OO.391E99' 00+3099SLO 10-3000"P1 10-3000SI:
2 0*O47SI2 -jO+3tC84iT 0O.30r'7'L* 2O-300OSS9 60-300011
2O,302tET V-0+3SC86CO 0.300689* 60-30001P* 60-3000IT:

-------0360C08* --TO3S9969----- 0+300909"--.-. 60-300011 60-30001.
1O.3L911SO 2O+32?'I6I 00+300L647 60-300011* 60-30OOOTI
10.30910O* 21+302992*- 60-]OOOSS*- 60-300011- 60-300011:

10+3091020 21+302992*- 60-30OOSS*- 60-300011* 60-30001T
---1-0 3 0 910? 2 1302992*- 60-3000OSS- .60-30OQOIP 60-3OCOIP-

m I~d M(L)V (9)dlIV (S) dlV

20.3TL6CC* 10+3OOETO 00+326666* TO+3000610 00

-----0O.34,L906* 10+3002EC! 00+3,766660 T0.30 0061----------0

0O*]+,L9O6* 10+31I1CT* 10+3990CTO TO+300991* 0+30S'701
.00*3S2C6L' 1*31ICI* 10+3990C1* TO.3009P 0+30S4701

0043200L0 10-o399921 00+30S9C6* TO4300971* 00+30S47010

7-OO+392LC9* 10+396S2T* 0O+38S6479* T0.3004721* 00+30S4701*

00+31026S* T0.3672T* 00+30999SO T0.3004711 00+30S4701
-----038CT9S* 1O.3SB472T* 0O+120470S * 104-300011* 00+3OS470T

0+3C81CS* T0+3;821 00+32S +7 iO+0JOOO 00+30S70T*

0+3S910S* 103414T' 00+36091'7* 10.J00CITP 00+30'7OT*

00+3916970 1O*369@C1* 00+3L66947 10.3002Ct' 00+3OS4701

--00+38 09047- 1O.3S62?'71 00+36242L* 1Q0 + 0 O1* 0030S701

0+38SV47C 10*3C472471 O0+3647226* 1O300161*
___ T S 8----.0 3 427'- -0 + 672 .-. 10+300161--A---

SSVHx NV9 0HdJ W3 Hi



-TPR-169 .--- ---- - Page 50

KOUNT= 100
--------------------------------------------

X = .12970E+01

SHOCK TYPE 3 BETA .645E00

VISCOSITY = .11356E-03 (LB*SEC/FT**2)

PT. Y Q i P

1 0. .5-80 2E+ 0-- .1;14489E+00 .17290E+01

2 .10326E+00 .15839E+01 .14432E+00 .17069E+01

3 .20753E+00 .--- 59 43E+0O--1 1426 7 E+00 .16434E+01

4 .31376E+00 .16099E+01 .14017E+00 .15499E+01

--- 5 -. 42282E+00 .16284E+01 .13718E+00 .14428E+01

6 .53535E+00 .16463E+01 .13428E+00 .13421E+01

7 .65150E--O-- .1-6587E+O .1. ,13274E+00 .12689E+01

8 .76496E+00 .16526E+01 .14005E+00 .12477E+01

9 .85728E+00 .15847E+01 .18896E+00 .12600E+01

10 .95107E+00 .13477E+01 .37483E+00 .12359E+01

----YT .10102E+1- .12266E+01. .62508E+00 .12348E+01

12 .10699E+01 .11345E+01 .98895E+00 *12403E+01

13 .'1-273E1--T 10692E+01-T .13772E+01 .12483E+01

14 .11820E+01 .10257E+01 .16631E+01 .12554E+01

1--15 - -. 12490E+01. .99254E+00-- .17183E+01 .12622E+01

16 ,13194E+01 .97145E+00 .14802E+01 .12695E+01

--7 - -- .13956E+01 .95295E+00 .11800E+01 .12785E+01

18 .15023E+01 .94849E+00 .10818E+01 .12643E+01

19 .16038E+01 .94709E.00 - .10682E+0 1----. 12679E+01-

20 .17052E+01 .94499E+00 .10658E+01 .12779E+01

2- ------ 18079E+01 . 94176E+0 0  . 10671E+01 .12951E+01

22 .19941E+01 .93222E+00 .10753E+01 .13473E+01

-23 ,19941E+01 --.. 10001E+01 .10000E+01 .10000E+01

24 .82500E+01 .10001E+01 .10000E+01 .10000E+01

PT. ALP(I) ALP(2) ALP(3) ALP(4)

I .-1100E-E-0 099.11 000E-09 .9 1135 3 E-09 .10000E01

2 .11000E-09 .11000E-09 .15343E-09 .10000E+01

3 --- -- 11000 E-09 ; 1100OE-09 .131 7 5E-08 .10000E+01

4 .11016E-09 .11000E-09 .35177E-07 .10000E+01

---- - .- 1671E-09 .110 0E-0 9  .93569E-06 .10000E+01

6 .36806E-09 .11011E-09 .21702E-04 .99991E+00

----- T- - .90935E--a. ---- 1-1327E-0 9  .41574E-03 .99833E+00

8 .25565E-06 .18863E-09 .56903E-02 .97712E+00

-9- -- 43251E-05 .-- 12752E-08- .38491E-01 .84542E+00

10 .48009E-04 .11778E-07 .13375E+00 .46248E+00

-11 ,19326E;-03--- .-72556E-0
7 ...... 1 78 9 2 E 00 .27374E+00

12 .55911E-03 .18134E-05 .20614E+00 .14340E+00

-3 .12743E -0-2 ..... 49932E-04 .21689E+00 .65675E-01 -

14 .20499E-02 .87296E-03 .21146E+*00 .22949E-01

-- 1-- *10425E-02.--.. 61256E-02 .15255E+00 .35832E-02

16 .15203E-03 .31695E-02 .72325E-01 .44560E-03

L17 .99197E-05- .---- 42284E-03 .17624E-01 .45960E-04

18 .31768E-06 .25394E-04 .32602E-02 .26649E-05

i9 .28359E- 07--2632E-05 ... 12109E-02 .25785E-06

20 .94356E-08 .12869E-05 .57934E-03 .85813E-07

2-- -46227E-08 .62972E-06 . .28608E-03 .41584E-07

22 .11000E-09 .11000E-09 .11000E-09 .11000E-09

-- 23 .-- 1000E-09 ..... 11000E-09 .11000E-09 .11000E-09
• , A- n nr- nn I I r c-



TR 169 Page.51

TH EM RHO GAM XMASS
-0.- .--20056E+01 ....... 83388E+OO---.14266E+01 O- -O

.16342E-01 .20.141E+01 .82644E+00 .14268E+01 .70014E-02

.33855E-01 .20385E+01 .80488E+00- .14274E*01- .--. 27995E-01-

.52889E-01 .20762E+01 .77267E+00 .14283E*01 .62945E-01

.72650E-01 .21220E+01 .73499E*00- .14294E*01 .11187E*00

.90830E-01 .21676E+01 .69849E+00 .14306E+01 .17491E*00

.10434E+00 .21977E+01 .66900E+00 .14312E*01 .25241E*00.

.11324E+00 .21550E+01 .63590E+00 .14282E*01 .33871E+00
-12140E+00 .19102E+01 .54301E+00 .14132E*01 .40979E+00
911988E+00 .15118E+01 .45483E+00 .13935E+01 .47180E*00
.10812E+00 .13206E+01 .41393E+00 .13778E+01 .50410E*00--
.94879E-01 .12310E+01 .40895E+00 .13345E+01 .53412E00
.-85926E-01 ---.12176E*01 .--44002E00 .12950E*O 1 .- 56346E00 --
.81656E-01 .12509E+01 .49906E+00 .12736E*01 .59433E+00
.80118E-01 .13404E*01 .61396E+00---- .12709E+01 ----.63984E+00----
.81569E-01 .14883E+01 .80428E+00 .12862E+01 .70253E+00

---87625E-01 ..... .16634E+01 - 10685E+01 --.---13070E 01-- .----79521E OO--
.93582E-01 .17340E+01 .11658E+01 .13146E+01 .95877E+00
93206E-01 .---.17430E+01 ..... 11858E*+01 -- 3158E*01- I--1337E+01-
.93062E-01 .17413E+01 .11984E+01 .13160E*01 .13220E+01
.--..94949E-01 .17345E+01-... .12133E*01 .13160E 01 ... .15263E+01--
.10422E+00 .17108E+01 .12529E+01 .13156E+01 .19332E+01
.---.56521E-12 .19000E+01 .99992E+00 .13200E+01 .19332E+01
0. .19000E+01 .99992E+00 .13200E+01 .33975E*02

ALP(5) ALP(6) ALP(7) PHI W
.-11000E-09 .11000E-09 --. 53926E-09 --. 29833E*12- .----20160E+01--
.11000E-09 .11000E-09 -.41810E-09 .82356E+12 .20160E+01
.11002E-09 .. 11000E-09 ----.31156E-08 - --.74400E+10 .20160E01-
.1111OE-09 .11000E-09 .10585E-06 .24956E+09 .20160E*01
...--- 16051E-09 ----. 11005E-09 -.28361E-05 .93505E+07- .20160E+01-
.22714E-08 .11128E-09 .65739E-04 .40333E+06 .20162E+01
-84238E-07 - .14003E-09 ----. 12578E-02 ---. 21041E05- .--,20191E*01-----
.26809E-05 .64085E-09 .17187E-01 .15074E+04 .20593E+01
.50438E-04 .50984E-08 .11603E+00 - .19391E+03 ---.23494E*01
.60521E-03 .25731E-07 .40312E+00 .31338E+02 .39796E+01
.24574E-02 .51979E-06 ..54470E+00 .14277E+02 *60450E+01
.65669E-02 .22442E-04 .64332E+00 .68762E+01 .94076E+01
.12758E-01 .47011E-03 .. 70288E+00 .34433E+01 .----. 14006E+02 --
.22337E-01 .40222E-02 .73631E+00 .17631E+01 .19074E+02
.69350E-01 .10785E-01 .75656E+00 .78345E+00 .24114E*02
,15522E+00 .39004E-02 .76479E+00 .30871E+00 .27053E+02
.21394E+00 .50789E-03 .76745E+00 .70723E-01 .28451E+02
.22874E+00 .50370E-04 .76792E+00 .12720E-01 .28779E+02

--.--23080E*00 .12445E-04 --- .76797E+00 -.46822E-02 ---. 28823E+02--
.23143E+00 .56240E-05 .76799E+00 .22380E-02 .28836E+02
.23172E+00 .27697E-05 .76799E+00 .11050E-02 .28842E*02
.23200E+00 .11000E-09 .76800E+00 .81900E-08 .28848E.02
-.23200E+00 .11000E-09 .76800E+00 .81900E-08 .28848E+02
.23200E+00 .11000E-09 .76800EO00 .81900E-08 .28848E+02



TR 169 Page 52

KOUNT= 500

X = .66346E+01

SHOCK TYPE 3 BETA = .630E+00

VISCOSITY = .17496E-03 (LB*SEC/FT**2)

PT. Y O T P

1 0. .1670357+01 .1294E4j+Uu .11 *b49- +U1

2 .23219E+00 .16777E+01 .12?99E+00 .11603E+01

3 .469419E+00 T7 oEi + u . i34-h E+0 u . I-I-T47i6ET r-

4 .72282E+00 .16160E+01 .16U09E+00 .11269E+01

b .96187Eo00 .1 4470-+010 .U I"976E-O-1--

6 .11063E+01 .13139E+01 -. 39317E+00 .10850E01

1. .1195 9E+0 .12303ib+U .b3403 E+U .IUt-78tUi

8 .13173E+01 .11466E+01 .77?79E+00 .10729E+01

9 .140-bE+ 1 .I o5sE+UI .1 U55t+0l .1-69E1-

10 .15353E+01 .10454E+01 .13483E+01 .10676E+01

11 .1 1 .i+ 1 u-62E-T - . 1-3-- - 0 1  .107

12 .18287E+01 .99714E+00 .11295E+01 .10b21E+01

13 . 215 F u+1 .991iirF+Ou .i0t05E+01 to(

14 .254A E+01 .1000?E+01 .10003E+01 .99302E+00

s15 .-3U-r3-E'-* 0 . .- l-OrY-E- t- ttOff-Pa- t-

16 .34454E+01 .99451E+00 .10064E+01 .10225E+01

17 .39(23E+01 .9d0804E+0 .1OJ13(E+ . 10557 EiT-

18 .44955E+01 .9797E+00 .10227E+01 .10967E+01
19 .5WO ( bt+ol .96,qq E+00 .1034,t+01 . 1 5-6E--+ -
20 .59174E+01 .94327E+00 .10634E+01 .12880E+01

21 .59-7--4E + 01 . 10 - .E-+- 1-- 0rt- F-t-- iO-0-tE -0 -

22 .82500E+01 .10001E+01 .10000E+01 .10000E+01

PT. ALP(1) ALP(2) ALP(3) ALP(4)

1 .-* 4E-06 .1 ' 6E- 9 . 27-?-2--HffT03 . 999 0-7-*0 0--

2 .30035E-05 .45433E-09 .81657E-03 .99664E+00
3 .24761E-04 .3 1"03E- 0 .5233tD-02 .Tl,7f i

4 .19358E-03 .23481E-07 .29485E-01 .87648E+00.

S.51 01. 9E-03 ,3 3 4f2E---t 7 . .98 8 -.eF-+00
6 .18505E-02 .78039E-07 .14289E+00 .38524E+00

7 .2 6114-02 . 34f00--06 .16 12-0 .2-38100

8 .38366F-02 .61792E-05 .19658E+00 .15182E+00

10 .56570E-02 .23471E-02 .21968E+00 .24280E-01
1 .19185E-02 .i5fEl --O . 0 ---E+ .21-59 CE-0--
12 .33364E-03 .81582E-02 .32929E-01 .21706E-03

13 .13792E-04 ?.(,0 -03 .9-4------- 435-1 E-O -

14 .30578E-06 .11055E-04 .60363E-04 .22668E-0615 .5519G;-0_ .22(;35E-( .'' i -, 5 .44b-&---

16 .18005E-09 .32147E-08 .24479E-07 .17070E-09

17 ..1- .6?E 0E-U 1 f E u 11 .11-0 6-(o-E-- --
18 .11004E-09 .11204E-09 .1 ?77E-09 .11005E-09

19 ii00E-09 . E- i9 .1t 61E-0 .f -E--0-9--

20 .11000E-Oq .1I00E-09 .1000oE-09 .110OOE-09

21 .11000E-09 .1iO00E-09 *.11000E-091 .1100E-09
22 .11000E-09 .11000E-09 .. 11000E-09 .11000E-09



TR 169 Page 53

TH EM RHO GAM XMASS
-- 0. .2.2 T6-evE+u0 .1 -- 325E-+O O.

.20237E-02 .22471E+01 .62567E+00 .14323E+01 .28373E-01

-;3. 8 6--3E02-- -. 2 213 E-0 - .6 8 0 9 E +--, 14-3 03 E 0 - -- 1--F-9E 0--

.66100E-02 .20636E+01 .54776E+00 .14204E+01 .25783E*00

Z2- E---0;-1-7 54 7 E-+ 0 .-- * --- 4-7 4 38E8+ 0- -- 1-40-1-4E O 1--.41 6 0 8 E 0--

.68292E-02 .15465E+01 .43958E+00 .13935E+01 .51047E+00

.529u-4-t-u7 i397EO •t 907E-00 *13070Ev t--.-6743E-4O0-

.34106E-02 .13511E+01 .42555E+00 .13612E+01 .64481E+00

--t 890E02-- . 13302E3 0 --- 0 079 E~00---- 3316 E 01 ---. 70 45 iE* 00-

.58137E-02 .13489E+01 .48384E+00 .12970E+01 .79738E+00

-t503 E--OI-----TiS 5t7 E+0-1 .-690-2 1 E-+ 00-----2975E0 I----.9627 1 E+O 0-

.21484E-01 .17510E+01 .89229E+00 .13106E+01 .11357E+01

.19506E-01 .1 99 S-3E-+-00---3 - 9 2 E + 0 I 1---755 4-2 EO-

.13846E-01 .18998E+01 .99253E+00 .13199E+01 .27562E*01

.--1-4-4+4E-0-t----1-8-964E+ 0 ----- 1-0 -1-E+ 0 1-----31-99E +0 1---395 1-7E-0 1--

.19204E-01 .18838E+01 .10160E+01 .13196E+01 .53534E+01

-7682 Et-- .- 86 51E+-0 1 .1-04-14E--Oi ---t3-19 1E- 01----3456E0-* --
.38375E-01 .18420E+01 .10723E+01 .13186E+01 .96477E+01

. 526E-0 1 . 182 f-4E-1 - -E-0-?t---t-t-9E2-

.88073E-01 .17403E+01 .12110E+01 .13163E+01 .17738E+02

--37-4-3E-12-----9000E-+-O--- -99992 E+ 00---3200 E+ 0-1 .- 7738 E02--

0. .19000E+01 .99992E+00 .13200E+01 .34262E+02

ALP(5) ALP(6) ALP(7) PHI W

-- 45928E-05 .1-3984E-0 9---69694E-0-3---37929E +05----20 7 7E+0 1--
.19203E-04 .23304E-09 .25193E-02 .10473E+05 .20222E+01

-- 5-;2- 4 O-- ----03 ,61-1t6 -E-i- -+62-076E-0----.-1-5928E+04 ---- 2056-9E0---

.11351E-02 .53673E-08 .92705E-01 .25142E+03 .22731E+01
• 52153E-4-O2---92133E- ---.- 308-36E+ 00-----. 51560E+02-- -.-32308E+ 01--
.94741E-02 .29234E-07 .46054E+00 .23157E+02 .45957E+01
S-1-9 39E-0-01----51247E-0-6-----54344E-+00---w-14371E+02--59684E-+01-
.14013E-01 .20472E-04 .63372E+00 .74084E+01 .88428E+01

-•±3139 E[- 01 . 2-745E-3-- 66-2 54 E0-------4041E--OA----1-1-9S2--02
.16338E-01 .42565E-02 .72744E+00 .19871E+01 .17629E+02

-i-09 3E-+0-----.7-4 65E-O-2---7-5608E-+ 00----57-954E+00--.-24532E-+02-
.19125E+00 .20289E-02 .76508E+00 .15002E+00 .27637E+02

*a2-97EE-+0----0429E-03---76-775E-00 --- ,- 83619E-02---.28782E-*02--
.23194E+00 .28996E-05 .76799E+00 .25579E-03 .28846E+02

2 -23 i-s0---268 E- ----7- 6800 E40---v49 E----0----2848 E-2- 0-

.23200E+00 .10504E-08 .76800E+00 .10810E-06 .28848E+02

.2-320f-+4 f---- -1-2-020 F- ----.- 76800 E+ 00----94598 E- 08----.28848 E-*-0---

.23200E+00 .11098E-09 .76800E+00 .83590E-08 .28848E+02
--. 2200E-+0----1-0-4 6E-09 --.- 7 b8 0 0 E+00-----.8 8271-3E - 08---. 28848E- 0 2-

.23200E+00 .11000E-09 .76800E+00 .81900E-08 .28848E+02
S--.--S2 -E 0 1000 E-09--- 7-6800E+040---8-i-900E -08---.-28848E-02---
.23200E00 .11000E-09 .768OOE+00 .81900E-08 .28848E+02



'X 169 .14932E02? KOUNT 1000 Page 54

VISCOSITY = .21410E-03 (LRISEC/FT**2)

PT. Y 0 . T P
1 0. .1P21-+ 01 .13664E+00 .1019EW+ l
2 .25032E+00 .166,96E01 .14223E+00 .10209E01

3 .51344E+0O .16?43E+01 .lbj4Ui+0 .10230L+01
4 .80340E+00 .15?31E+01 .21177E+00 .10242E+01

5 . Y7T03E+01 3 19E + . 9E- .1 E Z* ZE+3EUOI

6 .17208E+01 .13176E+01 .41909E+ 0 0  .10229E+01

7 .13103E+01 27 6 tO .7 9 O E+OI

8 .14294E+01 .12244E+01 .6199E+o00 .10228E+01

9 .15197E+ 1 .1 3V+01 .135J5E+UU .1e 9E+UI

10 .16551E+01 .11434E+01 .93947E+00 .10232E+01

11 .18779E+01 .10l 3E+0 1 .1319E+o1 .I (j41E+U

12 .20783E+01 .10496E+01 .16701E+01 .10299E+01

13 .25131E+0 1 T0 E i 19 84 rt + T1- 1 0 3 -0E- +- - 1

14 o29?)6E+01 .99569E+00 .10277E+01 .10l21E+ 0 1

15 .330t3E+01 . 9 , + U . MiUUL+0i .i1054t+U1

16 .37071E+01 .9949E+00 .100?0E+01 .10074E+01

17 .421+3 41-. + 1L+01 QN 3 I .+Q1 .1t+9UU 9 1 7I ( T O-
18 .47367E+01 .100b9E+01 .99210E+00 .9698?2E+00

19 .5 7iUt+01 .1 01 ,+01 9t7t*900 .IO E+-

20 .5*196E+01 .1017TE+01 .98019E+00 .92334E+00

21 . 7t + i .10iv3t+UI .97752t+UO .91284E 0

22 .69396E+01 .1017tE+01 .97956E+00 .92027E+00

23 .- fTL+ 0 i .i iE+Ui .9;5-9- E 00 .9-w73-w--
24 .80553E+01 .10054E+01 .99384E+00 .97559E+00
25 .875- 1 1-1O27E+'0i .9701+-t .9yE-t0 -

26 .86495E+01 .1U028E+01 .99b98E+00 .10000E+01

PT, ALP(1) ALP(2) ALP(3) ALP(4)

1 .0094E-0 4 .2!3 4t- 60 . 11 7E-C .95149E+0
2 .13371E-03 .7 56AE-U0 .16415E-01 .93039E+00

3 .287--03 .11b 4"3E- .4-2S -0 1 E-+GOEO--

4 .5792AE-03 .11524E-07 .72738E-01 .69260E+00

5 .1 05 f-? E ) 2 .4r1t- f-O .f tt9_- 0 0 . 4-9--3-3_--+)- 0--
6 .145O60E-(2 .65s6PE-08 .14d75E+OU .3eO23E+00

7 .- 173-E-2 . 5,3 L- 7 .1- ii+33E+0b .3177E#00
8 .21684P-02 .16n71E-06 .1837LE+00 .24390E+0.0

9 .2577i- 2 . 1 E- 6 .19-L--00 .193b E4-

10 .31100E-02 .74737E-05 .2145bE+00 .12914E+00
11 .3981 -- .T 5% : - 3 .2T3-3-1 - ° . 3 5C--1

12 .32385E-02 ,52781E-02 .2170WE+00 o12020E-01

103.37iJrEF .K0j 07E-@L .- ,77E 51 .303f-E --03

14 .20243E-04 .lbo94E-02 .53d83E-02 .14394E-04

i5 -G &±03-3---3i-4-5-  -3- - -  - -  --

16 .15075E-06 .86511E-05 .29321E-04 .11828E-06

l 7 .621---3 C 6 --t-1---0 C& . 1-- -E--4-5--- -482686-- -
18 .30655E-09 .9'90OE-O .35077E-07 .2?6212E-09
19 .11'3- E- t9 .3745 F-o9 .111 5E  0n .11416E 09
20 .11013E-09 .11660E-09 .145'24E-09 .il010E-09

21 .1 1rff 0E--- -t-t-E-- M- . -- 0 . 1 f--9- --
22 .li0OE-09 .i1011E-09 .Il80UE-09 .1100UE-09
2,3 .1--- 14 4 -L.10 'J .1 .1100 -.0E-- -9--
24 .1100E-09 .11001E-09 .11067E-09 .11000E-09

25 .11000E-09 .11000E-09 .11019E-09 .11000E-09
2, 1lOnnOF-09 '11l0OF-C 11007F-09 .11000F-09
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TH EM RHO GAM XMASS

-7. . 2442E01 .5~-4-78 E- 8-o--- 42 9 i4296E- 1-
.32695E-02 .22074E+01 .53477E+00 ,14274E+01 .28341E-01

.I2 t -18 .U0 ZOe t+?l . o .5d(r(u+(20 *IEW0U 4 2"E

.11961E-01 .1666E+01 .45441E+00 .14071E+01 .25842E+00
--15--S38 E- r--7-I6 362E- 0--- --4--5 E0---1--3965 E-+0-1 I- .- 1-707 E*0 0-

.16643E-01 .15100E+01 .39273E+00 .13923E+01 .51143E+00
S1-7-O--E-1 1--440 E ~o---.381-99E-+ 00 .13888E+ 01---.56828E-* 00-
.17409E-01 .13725E+01 .37210E+00 .13789E+01 .64522E+00

.1, _-tU l , 1-331T - .367-ttO0 0i,3-3E0 .10466 ET-0--

.17900E-01 .12928E+01 .36820E+00 .13408E+01 .79717E+00
. I t ;lT274-UE+ 0T1- 3 8-4-27E-+--- 2 98tE->O t- 9686 E+0- O-

.22911E-01 .13203E+01 .43576E+00 .12737E+01 .11352E+01.
-3-72 1-E--01 .1 6-97-3E-+0--t-.8--Tb-3 9 E- 0---1-3 054 E- 01 .-1-7-71-1 E-'-t--

.44481E-01 .18595E+01 .98569E+00 .13182E+01. .27658E+01
,SS lE- 1 1885-6E*01 .1- 0-7-2-E- 0- 131-98E 01 .39597 E---O---

.4660OE-01 .18930E+01 .10035E+01 .13201E+01 .53643E+01
Sf961--29-~ 90-3-7E--- 99 21-7 E-+ 0 0--.T-3 203 E-+ 0-1---T73636E-* -0--

.544blE-01 .19181E+01 .97577E+00 .13207E+01 .96750E+01
-596 b-7)- 1-9-3 ~2 E-+0-----;95698 E- 00-( .1-3 2-IE- 0-I-* 1 2279E- 0-2--
.62965E-01 .19486E+01 .94029E+00 .13215E+01 .15201E+02.
.615 7E-01 . 1-9554E - ---. 32-14fE' .13216E-~O -- 1-844--E---2--
.53967E-01 .19501E+01 .93777E+00 .13215E+01 .21997E+02
.42 11- 6 ---- T19-3-7E-0-----.-95 646 E- 0-----1-32-1-1- E-----i25892 E+ 02--
.31336E-U1 .19136E+01 .97986E+00 .13206E+01 .30096E+02

--I-255-3E-----l- 6905-6-1 .990-7-7 E- 0----I-3204E-+0--- -i-32b93E-+02-
.25906E-01 .19058E+01 .10012E+01 .13204E+01 .35025E+02

ALP(5) ALP(6) ALP(7) . PHI W
-- 7-3tb--O----O 03 1--7-5-3E-08---.--36-38-9E O--O I .69-32-3E--3------09-7 E-----

.80091E-03 .15236E-08 .52202E-01 .47274E+03 .21531E 01
-- &-7608E--02------96-1-E-0 8- 10864E-00---.20922E+03----.-2-3242E- 01--
.37820E-02 .11279E-08 .23030E+00 .80520E+02 .28050E*01

-- -7-327 E--0-2----,- 61-4 E--09--o-38068- 000--.35 I--9E-O 2--- 37699E 0 1--
.61616E-02 .41513E-08 .46340E+00 .22703E+02 .46502E+01

- trH-l -----i32 3E-0- -- 5 0905 E-+ O--------7-57-9 E-02 -- -5-3382 E-+ 0 1-
.570l5E-02 .67725E-06 .56451E+00 .12467E+02 .65079E+01
-5 E- 02-----759 E-- 0 -i-6 0 1-2 E-+ 0 0-----.-9 5-7-1- 7 E-+ 0 1---,--7 6259 E-+ 0 1--

.4054PE-02 .64558E-04 .64906E+00 .63512E+01 .97701E+01
-- 9--1E-- 02---.4620E-O 02-----7 0- 38E-+ 0 0---30858E-+ 01---. 4465 1 E-+ 02-
.13609E-01 .11144E-01 .73767E+00 .14365E+01 .20423E+02

-- 79-3E*-0 0 ---~-O--0- .75-356E--O 0---2 0 64E7-.--0----2 7--30-3E-* 02-

.22501E+00 .35240E-03 .76752E+00 .22578E-01 ..28668E+02
--.-2--39 E-+ 00----.-3-46-7-3E-- 04----6---67-95SE-. 0 0----2 01-0 8E -02----. 2-8831 E-+-O 2-
.23197E+00 .21423E-05 .76799E+00 .12609E-03 .28847E+02

-- 2-3200F00 ---.-7-.9257E--0--7----.--76800E-+-00---,48155E-05 -. 28848E +02-
.23200E+00 .25761E-0O .76800E+00 .16164E-06 .28848E+02

-3-JtF--E+-----.-1--7-S-0- 0-9----7-6 8 00E--00-----4-2- 52-5 E--0-7----2-8 8 48 E-+-02---
.23200E+00 .11178E-09 .76800E+00 .83365E-08 .28848E+02
.--,.3200 E +00-°-----.-1-044E---O 9-----,76800 E 00----821-39E-08-,-28848E+ 02--
.23200E+00 .11009E-09 .76800E+00 .82009E-08 .28848E+02

---- 242: u ---u E-.-11-00-0-9---.76800E-* 0---81952E-08 --. 28848E + 02-
*23200E+00 .11000E-09 .76800E+00 .81926E-08 .28848E+02
*2 3200E+00 .11000E-09 .76800E+00 .81907E-08 *28848E+02
*2 3 200E+00 .11000E-09 .76800E+00 .81903E-08 .28848E+02



TRl9___ ?24974~E+02 KOUNT 1500 Page 56

VISCOSITY .2141OF-03 (Lt*SEC/FT**2)

PT. Y T 1P
1 u0. 1 745 6 +u t f-,~i d-~f~6~

2 .292613E+00 .S9~ .1699?' +00 .76b45E+O0

4 00 137.§+ 0 .I 5+0 1 .263D'7F+0O .800383E+Q0

6' 13 8,;l +(uI .13 4 60g+01 .435D83E+O0 .81244E+00

8 .5 + (1 1 .13?;?1E+oU1 ~ .,1SeE + 00 .81132E+00

10 .04E + 61 2 ?,4-E+01 .74C40I E+OU c,2201E+00

-. 12 .22434Er.+Ol . 1 :3E+01 1.-'09E+01 .83151E+00
13 7 0 --- F+1 - t t I tL;C)59 8E+00

*1.4 .3312]F-+61 .I> ),E+01 loqF~ibE+01 .85602~E+00

15 * 7 1 t tr - r-i 01
16 *4114YE+01 .102)7Y9E+O1 .97Th74E+00 .6790tiE+Oj

18 S 1i.46E +0 .10'-,E + 01 .98C138E+OU .91132E+00

*19 * 56 7-*-t-f ---
20 .61439F4-01 .101:)2E+01. .98&I00E+00 .93782E+00

el~~ 66 -96r +0 WArre6- + 0 t * 9 9 Oij- 0 -1±?l ttr-

22 *71 Rk- + 01 *10 9 F +1 .9c4320F+U0 .96232E+00

24 .~42+1 .U E+01 *.99- 17E+00 .98b5?E+00

PT. ALr-i1) [AL-i? ALP(3) ALP(4)

2 *i 5679E-('3 *8147 k'?F -uo .'7 57 6E -01 *dU018E+f00

3 3 .",7;0 1 .Y4 :)O 314AF9 .71b6 E-+-9-)--

4 .7019?E-03 .3S373F-Th8 .1024tDF.00 .57t)4r'_'+00

6 .133PF5-0? 04?1LiE-08 .15764-+E00 .35532,E+00

I .1R,, 7.2- 0? .4 30E-U7 1 1~4 + 0 0 .2",)30E+00
44;.? .u. .- : E .4 i 6 i iO. .j 1;K? j . 2.2)0 wEu ~0

10 .23 k E - )? *7;3T'cE-06 R fi; ,+ 00 .1 10 31E +0 0
11~~~~~ 1Jl1 -7E' iul9~4 44-±~~0±I

12 .385_73E-02 *14Th3Ei-03 L- ?,356E+00 bbb630E>-01

14 .2,?7ehE-n3 .7-4t3Ei-1)? .31ibY~E-01 *13!23E-03

16 .31(172E-05 6,14<.,iL-03 *b?712F-0: .20174E -05
1 7 * ; ,i F+-~~-i 1 ~L
18 :?1 049F -07 .14233E-0-3 .474bE-Ob *481 7F-07

20 : 1779HE-09 *43-,1)1 E- 06 *14.)0 tw 07 .15992E_09

22 ll1ul3E-0 9  .11791FL-09 .I3"90E-09 *I11OE-09

?4 *110 U-0 9 1 1(), 3E- o 110 7 (D F- ) .11o0O-O9
PS 444-7 6+3 -- 4±--~A19L & 40~
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TH EM RHO GAM XMASS

-0 .- 1-992E-+ .--- 40233 E-+4O---14206E+O1--O.-

-.25026E-02 .21560E+01 .39447E+00 .14180E+01 .28454E-01

-- 35E---2---2 E+ 0-1 -i-37-321 E-+ 00--.-141 06E +0 ---. 1 1475E + 00-

-.797U5E-02 .18508E+01 .34648E+00 .14009E+01 .259i9E+00

-. 10831 E-01 .1686t -- 0----12&68E-,-0 --. 3944E~0-----I4i2 E0 7-2 0-

-. 12412E-01 .16013E+01 .31673E+00 .13913E+01 .51190E+00

--- -- 3-iI 5-7 --5-4----l- 2-3 9 E+ 0-----Ti-3 886 E+ 0 1----- 56864E-+ 00-

-. 14521E-01 .15082E+01 .30880E+00 .13829E+01 .64533E+00

--- -t~-t9E-O- ---- 78 1E+ 0-I---30-78 0E-+0 0-----I--3-763E* 01 -- 0460 E-+ 00-

-.16699E-01 .14446E+01 .30954E+00 .13631E+01 .79675E+00

-.1- 7 F. -1 r 14194-001 133 0i 9 6 0 6 0 E~00-

-. 19239E-01 .14298E+01 .34776E+00 .13097E+01 .11334E+01

- i---E-t- - 1-5263E+0-----46-7-39E-+00 ---.- 2824 E01 .- -1-7588E+0 1--

.39287E-03 .185b5E+01 .75160E+00 .13118E.+01 .27777E+01

S1-496E-0-2---1-9W823EA-- -86466E+ 0---- 1-3202E0- --.-39762E* + 1--

-. 13143E-03 .19727E+01 .89843E+00 .13217E+01 .53831E+01

.- 41 02 . ,6-4 E 01 91-54E- - 32-44E--O- 73872E* 0-1-

-. 97324E-03 .19559E+01 .92788E+00 .13214E+01 .97055E+01

--w 5068 E-0 4----94-7-0E------93860E-+*0---1-32-12E-+1 --.- 231-7E-+-02-

.11128E-02 .19387E+01 .94844E+00 .13210E+01 .15242E+02

o2- 6-32E--0-2---1930-7-- -- 95-787 E-+ 00---1--3208 E+ 01 --- 18471 E+O 2-

.29172E-U2 .19228E+01 .96715E+00 .13206E+01 .21999E+02

193 liC *.2 *1. 9 -c-9-64-75 - --4-2-0-E- 0----- 2-5 8 50 E- 02-

.33889E-2 .19077E+01 .98566E+00 .13203E+01 .30010E+02

--- 30-90 E--2- -- 1-904 8E-- 0-1------9-1-84 E-+-O.O ..13202 E-+ 0-1 -.32596 E' 02-

.31709E-02 .19035E+01 .99733E+00 .13202E+01 .34922E+02

ALP(5) ALP(6) ALP(7) PHI W

---9-6E---- -LE- -- l 8- 2-955 E-+-0----16980 E-+ 03--2395 0 E---0-1-

.22182E-02 .12662E- 0 8  .14967E+00 .14235E+03 .24672E+01

-.-2 2 ,. -- .7 i 6_7-.2-----,-2-6 2E------e-~02-63E+-02--2-71221 E--O---

.37768E-02 .26490E-09 .31764E+00 .48859E+02 .32974E+01

__.4-14-2-0------3-7--O E--09 -,-42-508E-+--0-0---2 809E-+02-----,-42024E-+*0-I--

.41748E-02 .42927E-08 .48152E+00 .20514E+02 .49104E+01

-41-6 2-E --02---2-4 3-0-1- E-- 0-7-----S 12 69 E-+ 0f0 -.-1-7-1-74 E-+ 2-- 54139 E +0 1-
.42182E-02 .18620E-06 .55129E+00 .13561E+02 .62008E+01

EL -E-4 .0i--E----n7-- 5 -I-F--O n  _ 2_9 E-.02----.-6-89-9 E.+0L

.44938E-02 .56546E-05 .61492E+00 .85947E+01 .81512E+01

S52 8E-02 .8313IE_--0- -..6-6-5?72E-0-_ .. 5398E0098 .10.8172 E02_

.76892E-02 .64391E-03 .70227E+00 .32390E+01 .14274E+02

-71-4 32E--0- .-1-6617 E -0_1 -- 7- 5145 E+00 6 6 8 1 E +.0.0-___2 3836 E t 02_

.19447E+00 .15705E-02 .76498E+00 .13842E+00 .27811E+02

-2 a + n 3- E- 7 + 7L5 00 .2 49 E -0109__ 2 654 L _+02_

.23097E+00 .4 253E-04 .76790E+00 .34481E-02 .28821E+02

- 2 .4--3 0 E --- Zb- 99 E--O ( .2 9196 E-03 ... 8 _45 E_t02

.23199E+00 .3066bE-06 .76800E+00 o20214E-04 .28847E+02

-2--V2-0 EE-+ .---t--86E---07 76---.-7 6-800 -. 0 .-12-023 E- 0--.-2.8848.E+ 02

.23200E+00 .10785E-08 .768UOE+00 .69438E-07 o28848E+02

.323 ,-E .I- 7dO..Ln Iin I-O 7 -288_48F+02_

.23200E*00 l11193E-09 376800E+00 .83166E-08 .28848E+02

.23200o E+0O--.-1 aO E-0_9 .7bdE 80.0 E- 0 _... 82.0 0.2E.- 08 .- 28848E4_02_

.23200E+00 .11001E-09 .76800E+00 .81929E-08 .28848E+02

-2-32- 0-0 E-+-----.--1-00 0 E- 0 -9--76 d-0 E-0-.-- .-8-1-9 15 E-- 08--,2 28 8 4 8E_0 2-
,23200E+00 ..1100E-09 .76800E+00 .81912E-08 .28848E+02



TR 169 x = .30242E+02 KOUNT 1800 Page 58

VISCOSITY = .?1410F-03 (LE*SEC/FT **2)

PT. Y 0 T P
1 U. i 5 96oE+ 0'1 .21trr te-~1 .I -7T-3 1 --
2 .?I012EO( .15-327E+01 .21237E+00 .10695E+O1

4 .8968 E+00 .13,65F+01 .31F77E+00 .10607E+01

5 .1i18U3 +ul .i3:) .i+ l .379.73++0 .i E O+UI
6 .13331E+01 .12620F+01 .44061E+UO .10543F+01

S .i42i3Ei. L +0 I j1- f + f t- *-

8 .15364E+01 .12013E+01 .bl473F+00 .10520E+01

9 .16 ?C E + 01 . 17"E,+ 0 .F7 +). .- +-0 .10 -tt

10 .175OgE+01 .11446E+01 .7-016E+00 .10498E+01
II . 365+01 .1u-o02t+O1 .*7996Eua0 .1083E-31

12 .2 1668 +01 .10 L E+01 .11c73E+01 .10473E+01
13 .27593E+f0i .-94 )0 .;1P 37- l- +1 .105 7F 01
14 .33182E+01 .99611E+00 .12585E+01 .10312E+01
15 +3718 +01 .- 1 100 .10 uv 7 E+0 1

16 .4095E+01 .10027E*01 .1Oli3E+01 .993?5E+00
4l .n0 +01 .10 ie t +I . 9+7 0E +OO .97 9 tE+00

18 .50633E+01 .L0Ob6E+01 .99495E+00 .96756E+00
i9 .55-BL +01 .1a--01 .9939E+0- .9 6 29EvO --

20 .60849E+01 .10OE100+01 .99319E+00 .9619E+00
21 . 6 i .7 +1 .10 02E+01 .945f---0 .9r§ 5-
22 .713,;E+01 .10076E+01 .'56bE +00 .97203E+00
23 .7661 i t. f), F+ 1 i.9 H4 703 ." "4 ,+ 6 u
24 .81917E+01 .10043 F+ 1 .9997tb+U0 .989A1E+00
25 .35 -if-- ) .109, 0-41 .+00 01 1 7-,? 1 0
26 .87725E+01 .10038E+01 .1000EEO .10000E+01

PT.. ALP(1) ALP(2) ALP(3) ALP(4)
1 ' 3 -3----- 33? -- - 0-3 01 .7 b9-1-E--O--
2 .41839E-03 .64793E-08 .b3619E-01 .73448E+00
3 .47449E 03 . 377)E C: * i7C 01 .657050
4 .68730E-03 .87190E-09 ' .11371+00 .53157E+00
5 .9911 E-93 . 1't'7- 14 7 F , 7 - c32E+00

6 .12093E-02 .73.42E-08 .16i12E+00 .3+?20E+00
7 .13 02 19 - -4-E 0 7 .17 0E 0 30 13~ -+O---.
8 .15636E-02 .65A11E-07 .i8158E 0+ .26119E+00
9 .173 .E 02 * 1',1-, t" , E-JO,0 .22'>7E00

10 .2n231F.-02 .601 "E-0b .20090E+00 .1h571E+00
11 •2 3-q- -0 ? . 73IE-05 - -75 E-) (- 27-2 7E+00

12 .30912E-2? .5253_E-04 .22962E+00 .. 74-77E-01

14 .3041lE-03 .7518E-02 .51914E-01 .2683E-03
15 .- : ' E1; . ? l = C 1 ."2 3 E -%)4
16 .81407F-05 .523o5E-03 .21-)86E-02 .4 53?5E-05
17 .- 1 O- .71 -, - .; t 6Et-E--06
18 .8733?E-07 .65i40E-05 .2?033E-U4 .56734E-07

20 .5900 3E-0 .33133E-07 .11115E-06 .44511E -09

22 .11158E-09 .2l boE- .,b4bE-V .11115E-09
?23 . --11 0I I t 4l , 1-09 1 6 -U-9-

24 .n1100E-O .11O)02E-09 .11164E-09 11I 00E-09

26 ----- 1100F .11 E-09 .*1104,E- 09 .1100E- 09
26 .1100E-09 .ll01E-09 .11042E-09 .11000E-09



TR 169 Page 59

TH EM RHO GAM XMASS
0 .1 9-46 01------4-7-3-71 E- 1-O0-----410 4E-+ 01---0.

.24458E-.02 .18569E+01 .46412E+00 .14083E+01 .28356E-01
To-tb E----- ---- 1-7-5-2E-01----- 4386-2E- 0---- *1-40-30E------ .-- 447E-+ 00-
.60560E-02 .1t013E+01 .40898E+00 .13968E+01 .25878E+00
.t4 r Gt-u ; .14b48E01 .3d EC L -2 . E1392 -0~--4 .4-133 E-O O-
.62332E-U? .13963E+01 .37640E+00 .13891E*01 .51153E+00

-- 7@ E-2-02 1-36 08 t+----,--3- - 84 E+ 00---i-3858 E-+O --- -56827 E - 00--

.56785E-02 .13205E+01 .36778E.00 .13795E+01 .64497E+00
3-;-3 2 E? -2----1--1---29--0-1 .3--- 166-I-8 E-+00 ----- 3-729E+ 01 ---- 70424E+ 00-

.499b6E-02 .12649E+01 .Jb639E+00 .13610E+01 .79638E+00

.4bEJC 02 .12364E1 .373860 6133SH 1J E01 6 9 6-01-6 0E1 00

.50407E-02 .12314E+01 .38969E+00 .13107E+01 .11329E+01
. 125 1( -- --. .42--- . E -O I2655 E- ---- 7-5-7 E-
.17455E-01 .16502E+01 .77297E+00 .13010E+01 .27876E+01

-.- +f 19-)_±-.A- -3+~---n4s---- 9 7-73+- -0-------31--5 6 E--.O -1---3 9894 E--*-1----
.73657E-02 .18905E+01 .97796E+00 .13194E+01 .54019E+01

-. 15641E-02 o19103E+01 .9-7715-E-0~ 0 -3203 C-" 0-IO .74-:--86E-+ O--
-.92232E-02 .19186bE01 .97068E+00 .13205E+01 .97517E+01
-- t tE--- + ------- 4-E9-2.----4 .9694E-+ 00------3 2 0 6E+01 --- 2-37 -7 E- + 02-
-. 18893E-01 .19229E+01 .96673E+00 .13206E+01 .15315E+02

-- 2 t-2 49E-1U--------92-0 E-+ 0--- . -96 952E-+0 0 -- 1-3 20 6 E-+ 0----*- 18553 E--O 2--
-. 22381E-01 .19165E+01 .97449E+00 .13205E+01 .22087E+02

. 2 611 l 01 .1 ) I I-1. f 0 C -0-9-0E+--00 .13E2-0+ O -- , 2--94-*--02-
-,22191E-01 . 19062E+01 .98826E+00 .13202E+01 .30100E+0.2

-17- 197046c + 199-EC -9-------.---w30-39E 0 E1------32 0 2E*- 0-1 -32-685E- 02--
-.21136E-01 .19045E+01 .99774E+00 .13202E+01 .35010E*02

ALP(5) ALP(6) ALP(7) PHI W
-2-5-41E ------ ,9 d 030 E-09-----.17-9-7E-+-O 0---- .27 1 E +-03 .. 25839 E-+ 0 1-
.26832E-02 .7522bE-09 .19880E+00 .98634E+02 .26634E+01
--3dD-1-- Z~ 256-- 4-- 0-9- .2.6a-._-O 69 -- -- 686.1_E +.0 2_ -2_3.9E_._1
,37002E-02 .10127E-09 .35033E+00 .41073E+02 .35299E+01
a 8 -2-02 .1250E 2 L0 405288 E+0_1__ 2529_6E+_02 _.4_4 0 53E+01

l.41b92E-O2 .15205E-07 .49131E+00 .19410E+02 .50620E+01
-. .2- l--E----02- .63Z- 2 E--U._Z------.5I81-0-+0 .0 1.1 662 b E+0O 2_, 55168 E +_L

.42309E-02 .34645E-06 .55144E+00 .13540E+02 .62110E+01
-L-46F-042- -1- F -1 I-5 a,57-E48 F+-0 1- 85iE~+-0 .L.6813_1E01_
.40011E-02 .60174E-05 .60730E+00 .91278E+01 .78689E+01
.333 2- E-02 6223 .0_EE4__.65 3.6F1E+0 0ILB 0 4 15E_+0. .1 1 00 E 0.2__
.30351E-02 .42160E-03 .68890E+00 .39670E+01 .12875E+02

--- ,2-0-tl-E-- -1 ---.- 60-4 E----- ,-Z-_4.0 E-+ 0 0- .. 10-998 E +01 ... 2 237.5 E+0 2-
.17260E+00 .33458E-02 .76303E+00 .22715E+00 .27264E+02

--4--44 .33[0- - --p3 7 6&8..-0.0 - 5.0 63 4 --0-.1---- 2 84.68 E± 02_
.229?7E+00 .11280E-03 .76778E+00 .91030E-02 .28777E+02
---23- ---. 3503E- 0 4----7 6-79.7 E+ 00 .... 1 015 E- 02 .. 28840 E+O 2
.23197E+00 .12931E-0b .76800EO+0 .92117E-04 *28847E+02

-- ,232- 0-+ O0 ---.-- 0-335 E---- -16800E_.O U .. 00-747E- 05 . 28848E +02
.23200Eo+0 .71504E-08 .76800E+00 .47656E-06 .28848E+02

3 8 4 21E+0 --- 2-0---- 8O I St--5-- 28..-.Et02
.23200E+00 .13282E-09 .16800E+00 .96597E-08 .28848E+02

-00-0-26--43--R-I-----, -2E--09----76 O. 0 E -00.. 82660 E 08 _, 28848E +_02_
.23200E+00 .11006E-09 .76800E+00 .819b7E-08 .28848E+02'

--.- 2-3 00E-0----.-1100-1 -09--.-76800 E-O .8 923 E-.8 .28848 E +02
.23 00E+00 .11000E-09 .76800E+00 .81916E-08 o28848E+02
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Case II: An axially symmetric Mach 1.2 hydrogen jet is injected into a

Mach 3 airstream as depicted in Figure (24). The initial conditions for

this case are tabulated under KOUNT = 0. The pressures of the jet and

airstream are balanced and the effect of the initial airside boundary

layer and base region are analyzed by assuming chemical equilibrium to

prevail in this region as described for Case I. The combustion generates

a mild compression field, the pressure increasing to about 1.25 of the

initial value in a distance of about 2 slot heights. The axial pressure

distribution for several streamlines is depicted in Figure (25). Note that

initially the pressure is highest in the combustionzone, but when the com-

pression waves generated by combustion reflect off the centerbody, the

pressure becomes highest at the lower boundary. The overall flow field

properties are tabulated.. The flow becomes subsonic at the axial sta-

tion X = 2. Details of the sonic line and streamlines in this region are

depicted in Figure (26).. Note that the combustion zone is in the vicinity

y = 6, hence the streamlines are closer together in this region so that

the mixing can be accurately calculated.

In the region 2 < X < 2 • 2, the upper subsonic streamline (p = .591) is

specified by the coefficients A thru D specified by the values of y, 6, as
and ess at the station KOUNT = 365, while downstream of X = 2.2 a higher

order term is added to turn this streamline down and hence re-accelerate the

flow. The Ferri-Kleinstein viscosity model is also employed for this case,

the viscosity varying from .6643 * 10-4 lb.sec/ft2 at X = 0 to .8252 *10 -3

at X = 2.4. The flow field properties are tabulated at the following stations:

KOUNT = 0; x = 0
= 100; = .731

200; = 1.32
= 300; = 1.77
= 365; = 1.96
= 370; = 2.03

375; = 2.09
= 385; = 2.20
= 390; = 2.25
= 390; = 2.30

400; = 2.35
405; = 2.4
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The flow field is calculated by "viscous-characteristics" from station

KOUNT = 0 to KOUNT = 365, while the subsonic routine is used to calculate

the flow between KOUNT = 365 and 405, below streamline 11. The flow down-

stream of KOUNT = 405, is calculable by "viscous-characteristics" provided

that the lower wall continues slope downward, hence, accelerating the flow

Note that the sonic line does not reach the wall since at station KOUNT=365,

the wall is turned down hence accelerating the streamtubes in the vicinity

of the wall. The wall pressure (as depicted in Figure 25) in the subsonic

region continuously decreases as the wall turns down., consistent with the

flow being supersonic adjacent to the wall. Hence, the neccesity of pro-

viding a variable pressure in the subsonic region, employing the normal

momentum equation is quite evident. A constant pressure scheme certainly

would not provide the details of the flow field as obtained in this analysis.
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CASE II.

---------~---~~.- P-~F-D.--O-G-R- -A-';1----V--I~- C~--- - ' - - H ' -A -

E 1 1 f- D SU S GR f F L-AW

CHEMISTPY IS FIP!ITE RATE

-- tF LT7C TTTJ 1
------- ------- -------------

1,,ACH NO. (FMIJr -)U0L.GO+Oi
VELOCITY (iiIN) = .49127E+04 FT/SEC

FPFSSIJEF (PPES) = .21160E+04 L/FT**2
EST------------rSTT-TT O-)t -- = . I -T-- LG S - - 3

FRn7ZE SPECIFIC HEAT RATIO (GAMINF) = .13710E+01

PEYNOLDS N!J:UIEP (RE) = .66800E+06

LEwIS NUmBER (XLE) = .10000E+01

OUTPUT HEADINGS
-------------------------

X - X/RTH
y -Y7/7T TI
0 - VELOCITY/UIN

--- i- - T-- - -y yTrP- E-/T
C - P~ESSIE/P~NES
T - FLOw .,EFL CT IOf . ( AIANS )

FM - MACH Nit\j 6E

XMASS - ,'l'I-DIIENSInNt L MASS FLOW

W - MOLECULAP WEIGHT

.ASS FRACTIONS
------------ r TT-"-vT-- H-

ALP(2) - 0
L--P Ht,- nr

A! P(.) - H2

ALP(6) - OH
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TH EM RHO GAM XMASS

0. .1000E + 0 . 99E - 01 .39-27E+- 1 0.
0. .12000E+01 .59879E-01 .13927E+01 .12640E+00

U. .1000it+ 01 .59879E-01 .13927E01 o25896tE-0

0. .12000E+01 .59879E-01 .13927E+01 .31372E+00

U. .120 TE*O-I .59i879 EY 0--- 3927 EO- -. 34146E 00--

0. .12000E+01 .59879E-01 .13927E+01 .36945E+00

0. .1 20-00+ O- -,S8-79E-- -13927 E0 --- 39-76 9 E 0-0-

0. .13200E+01 .10079E+00 .13608E+01 .43203E+00

0. .i3200-E+t- 1b9Evc)00 .12r1C-018 + 4-7r 17 OE0

0. .14000E+01 .18448E+00 .12514E+01 .53091E+00

U. .1 38 0 i3E+1 .T80E+0 0- 2496-E'v01 §586-78 EO0--

0. .14200E+01 .18944E+00 .12497E+01 .64390E+00

U. .15-6-00E7 0-1--. 222-EE-92 00 .52 E+- 0 .70937 E- 00-

0. .16800E+01 .27033E+00 .12644E+01 .78797E+00

U. .22400Et01 . 925E 0 •.1312E 01 o0 9E8C--O0

0. .30000E+01 .99992E+00 .13710E+01 .11428E+01

ALP(5) ALP(6) ALP(7) PHI W

-~..0 U crE-0r- 00 E-~0 5 0-0-0 E.--9-i 6 620 E-1-2-- .2 01-6-0 E*O--

.11000E-09 .11000E-09 -.55000E-09 -.26620E+12 .20160E+01

•----Ol*ttot- 1 ----- 000-- _9---- -- O----. 6-2 0 E-+2- -2 0-!-6 0 E+-1--

.11000E-09 .11000E-09 -.55000E-09 -.26620E+12 .20160E+01

.1o00 09 . 1100 O0 ., -E-0 -. 2-bE_20E12 .20-160EO-I--

.11000E-09 .11000E-09 -.55000E-09 -.26620E+12 .20160E+01

. 1-- Et-0j---- 0-fr0 E------5 5-0 550 E-O 9--- -266-20 E-+-2---201 60E +0-1

.11000E-09 .11000E-09 .48830E+00 .19763E+02 .50306E+01

-tO- E f-9---4 0-0-00 E-03 --- 71000---24759E E-- 0-1--- 6-9 18 E- 02--

.15000E-03 .30000E-02 .73737E+00 .15032E+01 .21076E+02

.-0O00,,,E-2 .i-04E 0 1 .74 '0 E + 0 0 . 119 4-E04-- .2 24 90E--O-2

.lb200E-01 .16100E-01 .75190E+00 .99661E+00 .23664E+02

-- 400-00E-0--- 7000E-2 .561-0+0-- .-7-8386E+0 0-----2 526 1 E +02--

.8700UE-01 .30000E-02 .75800E+00 .59968E+00 .26048E+02

-- Q4 E0 . 000E---.--t O00E--09 .76420E00 --- ,-19993 E- 00----- 27852E-02 --
.23200E+00 .11000E-09 .76800E00 .81900E-08 .28848E+02
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KOUJNT= 0

X=.0

VISCOSITY = .66431E-04 (LR*SEC/FT**2)

PT. Y 0T p

1 *5Oi0OE+Ol .164--E+01 1f6 OEP+O .O0FN1

2 .525Ofl0E-01 .16475E+01 ,11670D-+O1 .10000E+01

3 .5 5 6 00 E+ 0 1- 16,14 (DE_+ - -.11 h I1U_+ 01 o.100ut+UI

4 :56000E+01 .16475F+01 .11670E+01 .IOOOOE+01

6 .57000E-+Ol .104l15E+O.1 .11670E+O1 .10000F+01

8 .5OOFO1 *3-10--l+01 .17300F1+01 .10000EI+01

__9_ D ,')L .I u i t + (I . -35 Ru o + u .iu00u0E+01

10 .59000pE+O1 .IO3,h1F+O1 .31)600E+01 .10000E+01

11qs) *9OF~ 1T~+ 91 1 -~3bb+U 0 umYt0F T

12 .60000EFnl .1O363E-+Ol .i3300EI+01 IOOOO0E+01

13T9b0_D()nE+0T_1 I3 t, oL + o HJU+T1~ T:P'Tr

14 .61000F+01 .16iY544E+01 .33400E+01 IOOOO0E+01

16 .6D2000E+01 l10o01E+01 IOOOOE+01 IlOOOOE+01

PT. ALP () ALP(2) ALP(3) ALP(4)

1T7,F *--g -IF VTOr +

2 .I100OF-09 .1100U0E-09 .11000E-09 .I00OOE+O.

4 .Il0O~Fl-09 .11000E-09 .11000E-09 .10000E+01

6 .1100O0-C09 .110COEI-09 .11000E-09 .10000F+01

8 .11000E-09 .11()OCCE-O9 IfD4SOE+00 .34720F+00

1.0 .40onrl~-O'-3 . OO(OE-04 .24500E+00 *140OOE-01

12 *500OOE-03 .?,-jOUOE-02 .?0900E+00 .34000E-02

14 .11(1F 11000E-09 .- 9 .520E+00 *11000F-09
15 .'M T* u E --G 9 - 0 9. . 11-t-t0t 0 -00 Fw0-9-

16 .1LOOQE-n9 .11.000E-09 .11000E-09 .110OE-09
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KflUNT 100

X .73128F4-00

VISCOSITY .2-3642E-r--i (Lt3*SEC/FT-.*2) ____

PT. y T
5oo u5l V+,) I It-] jS-1C LT E401 -TD4T5E iJT

2 .5?4p<3E+01 .16143E+01 .11l302[+o1 :10406E+01
3 .*D4Cjit-F+ 0 .1 1birE+ ui . I I -) Pt- +-oi -.-I u 3Ht+ u1

4 .5 5 E + 1 .1 tii 4E + 01 .11,25E+01 .1036.7F+01

5 ~ e) 1 r) j +1 F I. F . I

6 .56C)41W+(0 .14I .1.?376F*01 .10341F+01
7 ~ ~~~~ + 5105+0W *7

8 .5~i2~+u .1I99~01 .15933E+01 .10'+s5E:+Ol
9.I -5~U .I5LTFF *c EI++t+U

1.0 .506~1 .1040-E+O .34) ?4E+01 *IO60IE+01

12 .60059E+01 .10164F+01 .41,175E+01 .104+97F+01

14 .101f0 0 1. i3E + 01 .311 2 LE+Ol .10508F+01

16 . f0P+1 .995L+2E+0i .106"17i-+01 .106 37F-01

17 67 -T 5 T- 3 +5 t + * 10 o~ 2 T-E 0-T007ET
18 .72001OE.01 *Ioc)VOO+01 .1C012E+01 .100il1E+01

19 -7700l0F+01 . 1 0 1F +01 -POTJ0-+u17-To o I ]FI7WLm

20 FIRC)OOF+01 I1OOOIlE+01 * 1O(U9F+U1 IOOOOE+01

PT. tl-P(1) (4LP(2) ALP(3) ALP(4)

2 .22142R5-f9 .11it06F-Oq .69996f -06 IOOO+0O1

30.15E tl 7 6-E--0O

4 .0~~?E0 *29*19 .190F HE-02 .99243E+00

6 .13055E-04 .1 t +E 29920E-01 .813SE+00

8 .13,A3o0-03 .c6iiC0 14096iE+00 .440EF+O00

10 *87](63E-03 .41<16E-04 .236'95E+0O .4i 842rE-01

12 .5?C26.7E--0 3 *bE -0 .2128j3E+oo .40 17 3E-02

14 *?7 0?;E -0 .(41 237F-0-3 .13' ?0F2+00 .1b44?F-03

16 *l?2- 07 .1 1 71 E- 05 .1 I-)4F-02 .10304FE-06

18 .1 0 E09 C; 110 09E-09 b,144-7E-04 *IlOO1E -09

20 .11000EW-04 IIOOO0E-U9 .50447E-04 -110OOE-09
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TH EM RHO GAM XMASS

0 . .- 6-8E1 ~ - ------ -- t--- 1- 3 9 2 p- .0 1 - -

-.35941E-02 .1l693E+01 .61612E-01 .13924E+01 .12654E+00

-. 44rsE-02 .117!E+01 .01x56_-01 .13924E-01 I -2 4- -&0-

-.79781E-02 .11724E+01 .61689E-01 .13923E+01 .31400E+00

-. 12427E-01 .11710E+01 .65523E-01 .13901E+01 .36979E+00

-. ib -T .°1 i730--773345SE0I .1385-3E -+-O- --.- 39828E*00--
-.15004E-01 .11882E+01 .94435E-01 .13712E+01 .43248E+00

-.950oE-02 .12154E-01 .12959E00 .13243.01 .47599E- 0--

.10797E-02 .12811E+01 .16557E+00 .12720E+01 .53049E+00

--- T87E-0? -3-E1 01 .1A-85E+ ---- -25-34E+ 0 --- 58658 E-+O 0----

.81635E-02 .14127E+01 .20480E+00 .12510E+01 .64377E+00

. 5 1-4E 0-- rtL5--4-0-1- .23-492E0-&---.--2555 E+ 0----7 922 E- +00--

.90512E-03 .16989E+01 .29921E+00 .12696E+01 .78814E+00

.19, E 03 ..121.5-01 48 35E000 .161E 01 .9037E0----

.23302E-02 .29016E+01 .10029E+01 .13664E+01 .11417E+01

. 17i3 -' ---. 245E-+0---. 1-0-38 E 0------37 08 E-O------.43 691 E+01----

.24823E-03 .29981E+01 .99972E+00 .13709E+01 .78465E+01

3-0 ff I--- 0 •299 1 O-- 9W 90-4. E--+000 ,13 E E-0- 569 fE-O-2---
.70068E-05 .29987E+1 .99895E+00 .13709E+01 .15540E+02

ALP(5) ALP(6) ALP(7) PHI W

.12000E-09 .11934E-09 .20756E-05 .12712E+08 .20160E+01
* 1-7-44 9 E- ---- I-2E-%-9 -8-----2-3 0-35 E-3----.-1 4-5-3 E--0 6- --. 20-166 E 01-

.64019E-07 .23628E-07 .56594E-02 .46287E+04 .20301E+01

.512 E-0 6- .~9r354-37- *+---2Y--755E-0- ---- 91649E- 03--- 20871 E01-

.26677E-05 .19852E-06 .88714E-01 .26316E+03 .22623E+01
.115 4-E--- . 7 07 .21507 0 -.- -36E+'02 w2-391O

.44862E-04 .98360E-06 .41803E+00 .28829E+02 .41401E+01

- -.- 8 d-1E- u-3- -----i- -3-7-E- 0 4-----6-1--35E+ 00---.-8 -596 0 E-- 0----.-822-4 8 E 01-

.45379E-03 .11123E-02 .71173E+00 .28324E+01 .15691E+02
--b 4-0 -r--- 02--22--3- 0-2---74-5-3 E--0 0-----1 5 90E------.- -- 0 0-9 E- 0~2---

.164U0E-01 .12961E-01 .75036E+00 .10313E+01 .23457E+02
-• .)47- 4}7_ 01 ,9 5 g .782 E 00 .2995 02

.10030E+00 .339~dE-02 .75901E+00 .54414E+00 .26216E+02

-1-2 5 E-+ 0 -33213 8 6 E- 0 ---- 2-3 05 -7-E-+-0 0-- 276-93E +02-
.23092E+00 .37132E-05 -.76792E+00 .44418E-02 .28825E+02

•-2i-3 95f*-- . 324- F+- -- -7&8 00 E4"0--------9587E- 0-3---.28847 E-+ 02----

.23195E+00 .11040E-09 .76800E+00 .19359E-03 .28847E+02
.231,f lO . 1000 C -09 7 --6800E00 1935E-03 .2847E-*-02-

.23195E+0O .11000E-09 .76800E+00 .19359E-03 .28847E+02
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KmhINT= 2 0 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

VTSCOSITY 9.7i4F-03 ([_P*SEC/FT**2)

PT. y 0 Tp
I .5'0CCE~l1 .S71260,:ibv6F9+01 .109)36E+01i

2 SE+.'c .5UE0 .l7 F01 .04F01

4 0 0 E. + 01 *i -30,^E + 01 .1 ? 56F + 01 .1092?F+01
5 n 6. b IE + 01 1-)0Z) 1 ~h+ () *I -t+"n --1 7109 23E-47G-1
6 6 .3E5?+ 01 .1445' E+01 .13233;F+01 .10929F+01

p .1-7,119F+01 1 7 2 1E + 0 *11E + 01 .10997F+0J1

10 S 9 0? F + ) *b-1 f7+ 0 1 27371,E+01 .11111E+01

12 .07 + n 10l0 34F +0 1 *3A'1 E + 01 .11138F+Ol
13 .i)t)4 h+ b I -.iU!TT)7~E +0 -+1~11~~
14 f.lb0=E'+Cj .IOOL+4E+01l .31142Ei+01 .11114++0

16.0 *O7 E + 01 .991?0E400 . I I E +0 1 .1125bEF~o1
7V7 ~ ~ ~ ~ ~ ~ ~ -(-T -E*O-- 6 T I *1Y' L C--1Ft1 02 O-t

IP *2005+C1 9651E+0o .10024F+01 .10055F+01

20 "Ao ~+ 0 *0f1+ 01 10O10 + 0 1 *00E

L)Ut +U -5 777 17 3 E +0T 1 1-- 0-7+

4 *I At Hi

5 *3H4~Obc42 -3E-09 .2339U7E-01 *99108E+00
4* 4-u r-.f-n . *jlCTq-OrWIo

7 I'D,33 7E-03 IY1tE-ov~ .9375oE-01 .62747E+00

9.6070 66-03 .111JLPC-Ob *1R387E+00 :26686E+00

11~~ -1 S0U6( *1)E J 02:31 5E+ 0o .43126E-01

13 .1846u .0~0-2 ~~ 47E+00 .26192E-02

15 ?,q ER- 0 1 E - C)O? *4 P33E -01 .6722-?O-4

17 .3- 4h3E-09 .16o146E-07 .5il-(-'OL-04 * 12'07F-081.

19I 1 11 006) 1 i 01-0' *0447F-04 ,110OO06-09
*T I1T L 0 _0 9 * i.

21 .ILOOG)E-0uv .11000E-09 *5044-/E-(-41 *11000W-09
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TH EM RHO GAM XMASS

0. • I1 33-f 1 ,6335 51E - , ZO O-I---O,

-.43718E-02 .11297E+01 .63901E-01 .13920E+01 .12656E+00

-. 9 3.L- 02 13 UuQT-.TI 46 Ot-01 .130t Tt-y . 9 13 0 O

-. 12676E-01 .11289E+01 .66151E-01 .13908E+01 .31412E+00

- ~1-ri-E-T- .r 116E--+ 6 ,-90 1 01---~3 893 E+ 0 1---3 4-190 E + 0 0---

-. 17768E-01L .11217E+01 .73917E-01 .13864E+01 .36996E+00

S174---194iE-01-I - 18-1 . 5t- -E-1-3+1- -3E.-39 849E+-GO---

-.2052E-01 .1123bE+01 .95327E-01 .13709E+01 .43271E+00

...7 49E-o i45E-( .1 .+ I 3 1 7 ,  -O58 --

-.12076E-01 .11942E+01 .14788E+00 .13040E+01 .53011E+00

- 6-4-90-4-E0- 0----i26t-E-+ -0-- 17-71- 6 E-- 0 0--1-271-8 E10+--.-5 8 6 6E 0 0--

-.27436E-02 .13592E+01 .20840E+00 .12583E+01 .64399E+00

?rrsF &--t-.Yt49 U . &E+-00--i-t2 6:-2 E+0---094-9E-E+- 0--

-.38918E-02 .16826E+01 .32195E+00 .12735E+01 .78845E+00

-.48002E-0uc .2u307E01 .48160[.00 .13024E 01 •90--2-2E--0--

-.19634E-02 .27741E+01 .97143E+00 .13595E+01 .11419E+01

.4-899 E2--2; 9 t55E0--- . 9E+- 0-1-----i-37-0 5 E0---.-4 3-385 E + 0-1--

,12919E-02 .29953E+01 .10030E+01 .13708E+01 .78262E+01

- -272-1-t3--f32-998 05-1 99 9-7-8 E-0-0 . 1-3709E-+01-----I 1-553E+ 0-2--
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ALP (9- , ALP() ALP(7) PHI w

.40340E-09 .13765E-09 .96165E-05 .27440E+07 .20160E+01

,8659 50 E--"0 -- 5-963 65-- 20-5- 7 5f-0-3-----22-2-E-+G 06--2 20-1-65 E-O -1--

,40027E-06 .11457E-07 .66674E-02 .39235E+04 .20326E+01

-~4-4-t -?~t- 0---4i 3 E- --38 -0 ;-7 4-7-746 E--0- -- -- 840 E-+ 0-3----2-1-4 15 E-+ 0--
.12790E-04 .53879E-07 .10061E+00 .22802E+03 .22999E+01

,- r ,ar .tt!27E-67 1 H-6- ----- - 5 8-2 - 0-t

.60252E-04 .43216E-07 .27855E+00 .60470E+02 .30623E+01
- T-e fLE-- - -- 55-39-7 E--0 6-.-40-7-49 E-+ 0-0-- 3050 1 E+ 02 -----40 288 E +-01-

.21618E-03 .10345E-04 .54844E+00 .i3874E+02 .61439E+01

-- 367 6E-03--- .2222 E-3- .--- 66067- 0 - ----i -7 2 6 9 E 0- --- 1 0512 E 02----

,95832E-03 .22233E-02 .71680E+00 .26273E+01 .16187E+02

.66041 CR ., c ,4 3--3 02 -74-1 0 .1-40.- --- -21-0 06E -O2--

.41818E-01 .12716E-01 .75269E+00 .86669E+00 .24151E+02

•.t0 1 9E-EOa-F--53- ---- 7- 8-79 E + 0 .... 539 5 1 E + 00 ---- 2 6026E + 02--

.16934E+00 .10061E-02 .76356E+00 .25600E+00 .27518E+02

-- 2- 896-F0--- -25-37 E-4-76 7 7 8E+ 00-- 12460 E- 01--- .- 28782E 02--
.23195E+00 .25985E-07 .76800E+00 .21138E-03 .28847E+02

.- t3 -+ 00----F2 9 9 OfE- 09 ---.7-6800E-+ 0 0----r4936&E- 03---.-2 884-7E-, 0--

.23195E+00 .11001E-09 .76800E+00 .19359E-03 .28847E+02

.--3195E+00 .11000E-09 .76800E+00---. 19359E-03-----.28847E+02--

,23195Ee00 .11000E-09 .76800E+00 *19359E-03 .28847E+02
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KOUNTT= 300

X = .17676F+01

VTSCOSTTY = .60750E-03 (LR*SEC/FT**2)

PT. Y 0 T P

1 .50n00oE+91 .1 5b4E+01 . 12218+0i1 . 165E+01
2 .5?4rECP+)1 .1 04 +O1 .1 2-3? F+01 .11763E+01

3 .*-" + . 4 - .11+u1 . 11(/u4E*U1

4 .5573-E+n .l*4 74F+O1 .12771E+01 .11b80E+01
5 063" -+('1 4;_7(+01 .13l 41T + 0 ]  .11 tF+ t
6 .57~5'+01 . 135w +01 .13'o2 (j1 .11686E+01

7 .57?12-~ET .*125h+01 .14/90E+u1 .I I9ET
8 .5771HE+0)1 .12?15E+01 .16356E+01 .11726E+01
9 .583(,f. E 1 .11i i t * 1 + .1919 + .11 I t (+Ul

10 .5947F+01 .107P +01 .24291F+01 .11813E+01

11 .59530 F + 01 .1 0' 1 .30 i 71E + -1-6TT-IF-T +T

12 .6003)E+01 .998*F+00 .35510E+01 .11864F+01

13 .60Uq 01 . Fi IE +00 .30U+01 .11-91 -01

14 .60-475 -+01 .841F+00 .31537E+01 .11901E+01

16 .61' EE+01 . TS fE + 00 .l1?77E+01 .11919E+01

17 ,:7053 ++ui o 970E+00 .101 9E+0 .-1i 0 0 I

18 .72013E+01 .99Q16E+00 .10041E+01 .10115E+01
19 .7703tE+01 .9. 4 E+T .10 ji)18 E+U1 .10G-3TETF-i-T

20 .,?01E+01 .10Io00E+0 .1001IE+01 .10007E+01
1 .17f1+1) .l )U ItU . 1 0+0U1 .iu0uul+u1

22 .9000E+01 .i0001E+01 .1o00u E+01 .10000E+01

PT. ALP(1) AL D (2) ALP(3) ALP(4)

I .3 [0- - 7 . 113 t - .4-1-5- .E-9 983 0 -

2 .47??E-06 .121]OE-09 .47404E-03 .99612E+00

3 .211i77-09• . - ---- 7 F3 02

4 .5Cl7~E-04 .25271E-09 .31014E-01 .87)79E+00
..I 4  '-. . uo.-U' .50356E-01 .7 981E U00U

6 .17279E-3 .9441SE-10 .74449E-01 .70380E+00
/ .di A -, 103 .* -5r09 . Il-i~T .--- -59 98 E-

8 .46133F-03 .409 F-0 0 .13569E+00 .45892E,00

9 ,. .;- .4K4-=--7 s ? - ~E+00 3 0"-T0--
10 .124.9E-02 .i7 1iE-05 .20332E+00 .16523E+00

12 .23]A5E-02 .635 E-03 .23391E+00 .297t0E-01

--3 7. U -O7 .- 7. Oi -0 - .2- ? (5F5 1-=-t--302E- 02-

14 .55963E-03 .~?O41E-02 14 r E+00 .13375E-02

. .I U--0 T . 55E 0 7 -6-37 -0 --- 8 6?22? F 03-
16 .31565F-C5 .96 6- 04 0.5 5E-02 .55682E-05

18 .11 E6;-09 2?3707E-Q0 .50470E-04 .11]E-09
--- T9 .. * --r- U-TT 1Y -7----mr-. e --t -l-00-1E"--0 9-

20 .1l 0nri-09 .1 000E-09 .504z7E-04 .I1000E-09
0--7 . 1 0 i1u T-09 .s5t47E-TJ4 .1-O-oE-09 --

?2 .11000E-09 .i 1OiE-09 .504 7E-'J4 .1100OE-09
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TH EM RHO GAM XMASS

0. .10715E+01 .6T729J-0 I .139-1 7I+ 0.
-.54376E-02 .10719E+01 .67363E-01' .13913E+01 .12658E+00
-.leJn30t-Ui .I7ibit*UI .6R299E-UI .1i3909 E+i .2 594-ffE+ 00
-.16435E-01 .10715E+01 .72047E-01 .13890E+01 .31423E+00
1-.14-37/--1 . t T 67FT'I- 7565$E-0--1 .-3869+OI-- .34201 EO --

-. 21123E-01 .10646E*01 .80877E-01 .13837E+01 .37008E+00
2- ~D75 -01 . 0-jEI I 87 . 88-- 13SE+0 ~ -- 39862 E+ 00--

-.24047E-01 .10672E+01 .99373E-01 .13699E+01 .43284E+00
-.23 6E-01 .10857t+01 .11763E00 .13507E01 .47-59-E 0
-. 20893E-01 .11289E+01 .14397E+00 .13203E+01 .53007E+00
-.-T7 B0E - - . PO- t .172 99£F--- .1- 2 899E- +01 .-5865 6E+-0-0

-.14722E-01 .12842E+01 .20549E+00 .12698E+01 .64406E+00

-.I 053t-O . T-22 01 .25-175E-+ Y-- 126-35 -- 70962 EOO--0
-.71413E-02 .16132E+01 .32976E+00 .12741E+01 .78855E+00
- .54E~t- .19483E-0i1 48590E+00 .12999Ev01 .9089EOC 00--
-.25237E-02 .26497E+01 .94369E+00 .13524E+01 .11413E+01

.7-0628E-0Z 2272 2 97bETO---- r 38ErO --- I 2E----. 3249E + 01--

.26899E-02 .29915E+01 .10073E+01 .13707E+01 .78214E+01

.737T-07E-'3 . Q88 t-1--0 -0-t2 E--0---i-3709E' 0--- --553 El- 02-

.lh819E-03 .29983E+01 .99945E+00 .13709E+01 .15527E+02
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.909!9E-05 .29987E+01 .99895E+00 .13709E+01 .24220E+02
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-r3-ter---- --- t1 4 9 7 E - 06----- -76 80-E- +0.0 -----.- 24 53-2-E-- 0-3----28-84 6-E+O02-
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KUtNT =  365

X = .191. O01

VISCnSITY = .7i46-E-n3 (Lp'SEC/FT-; 2 )

PT. Y T P
1 00 3'  1 C------,-4-27 -- i
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8 .57672E+.1 . 27F+ .16539 + 0  .12E+01

10 .5905E+l- . I OE+O .23513+01 .1236E+01

12 .0097E+01 .972thE+C0 .3458 +0 ]. .12357E+01
1 3 4 - r + i 7"P. 3 F 1o *0 . 3 6 7 6F-+ 44-- ---- 1-24- -44-0 -

14 * + ,31 .97L420E+00 .32199E+01 .123'E+01

S .$ 191 - .." .23-- L +u i
16 .(19 --+"1 .9 C1 F 21-+,0 .13111-+ i .12c3 08E 01

17 . '7070:- I 1 7 + 1 0 ++ 16E+0.

72019 0 . 4 1 + . 0 41 +0 1 . 1501E +01

20 . + .117+0 .10003E+0 . 1 (0 + ( I
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22 .92000i-E+01 . 10 f.,E +0o1 o1000 E+01 .10000E+0 1

TH EM RHO GAM XMASS

-0. ,10C2 E--1 -,d-GLZS-EL -OL39L}-7E+-*. 0 -
-. 4400E-02 .10136E + 0 1.  .71080E-01 .13907E+01 .12677E+00

-V ' )-. 1 .10257E+) 712 i-- l ,0E+ . .26 7F- +--.EO- F

-. 16510)-1 .10239E+01 .77405E-01 .13878E+01 .31643E+00

---- e-)44 E--4---,-1-2- 6-+- 0------ 2- - - E - 0- 1 1 8 6 i-0----- 3 4-4-6.8 E-+0 0
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2.. U- "4 -- 11-F -7 ---.- 9-3*--6-E _0I- ._-2E+L1 40.215+ _0_

-. 3310 E-01 .1025cF+O1 .10410E+00 .13691E+01 .43680E+00
.2 3 - - Q- I q+5AE*0 !+I0 ' 5 19 E -+ A 1 4__.PF+0
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-,17 40OF-01 .12406E+01 .20555E+00 .12753E+01 .64867E+00

- _--3-4-V- ------ -3 0f0I _ ---- 7,(_.-O 412650 _0 .1_.22.E L._0__

-.7o400E-02 .15 bv2E+01 .32794E+00 .12731E+01 .79316E+00
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-.1i1OE-U2 .25 71E+01 .93223E+00 .13488E+01 .11453E+01

__,_ ~ -2 .2I 9_E L_+_1 . L_?REF-+__e01 .13_IE+01_ .3I83+L01_

.3500UF-02 .29893E+01 .10091E+01 .13707E+01 .78298E+01

S3DE0 2-Ao£.±_ -Lno1A _El_ ._ _.60 F L _I16ELO_

.26000E- 0 3  .299d1E+01 .99895E+00 .13710E+01 .15539E+02
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X = 2~?E0

\TSCOSTrY = ,)-46F--i3 (Lfl4.*E5EC/FT**?)

PT. Y T p EM

2 .5~? 4 ;7 *l-01 .2?4F+j1 .1?87,:EF01 .9990t5E+00
1 .7 Z, 10041F+01

7 .79 1K .11hF( .3h?,lri0 1s-3i .10009E+01

6 .5(A71!F+r)i I o?7)791 .143 30 EJ+ 0 .12,,37 + 01 .99666E+00

8 C 7 A.~ * + 1i 0(3E + I I + o 1 . i0:3E + 01 *10 03 1E +0i1

10 *5 C + I I -*C3+ 1 *2'1,i F+ 0 1 12 7 0 5F+ 01 .106(69E.+01
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V,'SCOSITY . 7143]ri-03 (L 5CT*)

PT, T p E N
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10 -or- ~ ~ .0 .?3+i *03EO 1044,9E01
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VIII. CONCLUSIONS

The 'Viscous-characteristics" method for the analysis of supersonic viscous

combusting flow fields has been extended to analyze local embedded subsonic

regions as well as to analyze shocks produced by combustion and/or pressure

mismatch between the injected gas and air stream. The numerical technique

developed for analyzing subsonic zones requires that the subsonic region be

bounded by a lower wall and an upper boundary that is slightly supersonic.

The shape of the upper boundary is fixed by the flow conditions by requir-

ing that y,e,e s and ess be continuous, but higher order terms may be speci-

fied to shape the streamline arbitrarily. The shape of the lower wall is

a function of the upper wall shape specified. The program developed can

be used in its current form to design centerbody shapes for a specified

streamline shape in the combustion zone. Note that the program can be

modified to make the upper boundary a specified pressure boundary and hence

a lower wall shape can be obtained fora specified pressure distribution in

the combustion zone. The program can also be extended to analyze embedded

subsonic zones surrounded by supersonic flow on both sides provided that the

flow can be assumed inviscid on one side. Referring to Figure (7), where

the flow beneath the embedded region is inviscid, a marching scheme can be

developed wherein the flow in the subsonic zone and above is analyzed by

a mixing type grid, while C+ characteristics are followed in the inviscid

region. It is felt that these program modifications would be realistic

extensions of the current effort and should be considered in plans for

future research in this area. The extension of this program to embedded

zones with viscous supersonic regions on both sides appears to require a

more significant effort.

While the "viscous-characteristic" program developed for supersonic flow

fields can be readily run by one with only a limited background in gas-

dynamics, it is felt that the subsonic version be run by an analyst who is

thoroughly familiar with the physics of the problem as well as the details

of the analysis included in this report.
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APPENDIX I

MARCHING SCHEME - FINITE DIFFERENCE METHOD

B

T C-Char

Supersonic Upper Matching S.L.
Supersonic
Region 2

Subsonic I ---- M=1
Region

3 4

5 6

7 --- 8-- 8

9 -------- ---- Lower Boundary

C Ch r.

A
FIGURE I-1.

Referring to Figure (I-I), all properties are known at the initial station I

and hence all derivatives a/y may be calculated at the mesh points 1, 3, 5

etc. The derivatives py and ey are related to the streamwise derivatives ps

and es by the relations

cos 2e [A] yPM 2cos2e e - sine p

P M2cos 2O - 1
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sinecose [A] - (M2-1) cose P - siney PM2 y
e = (AI-2)

s yPM2(M2cos20 - 1)

where2 Jsine S1  (y-1)S 2  w S3i
A = - yPM + Y APM 2  yPq pq miyPM(AI-3)

(y-1) hi i  w i
+ -

(y -1)M2 yPq pq m

Assuming a value of e (or prescribing this value as a function of x in

the inverse problem), all properties at 2 may be obtained by the boundary

characteristic relation along 2-B and the s-momentum, energy and species

diffusion equations applied along the streamline 1-2.

Knowing P2 and e s, we may obtain P and e by inverting Equations (1)

and (2).

Combining the s-momentum, energy and species continuity equation, the rela-

tion

(M2-1) Ps + yPM2 n = [A] (AI-4)

is obtained, while the normal momentum equation is written

Pn + YPM2s = 0 (AI-5)

Between points (2) and(4)

yY24
P = P2 + [P +PY2 2 (AI-6)

=Y24
4 = e2 + [y+ey 2] 2 (AI-7)
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Between points (3) and (4)

AS

P = P + [P +P A 34 (AI-8)
4 P3 s [Ps3+PS43s4

As

8 + [e + es S]  3 (AI-9)
4 3 3 4

The system of Equations (4) to (9) (with Equations 4 and 5 applied at point

(4)) along with the transformations

- cose 2- + sine
as ax ay

and

- cose sinean ay ax

can be combined to yield the relations

p4  2(04-3) 2 Cos 2 co4 42 2 1)
ASP4 34  4 M4 (M4cos2 4 1) - cos 4-1)34 3

2y4M4 (4-e2)sine4  M2  2(M4 -l)cose4
+ Y- 4M4 2a sine4 + (Al-10)

"Y24 Y2 AY24

2(M-1)P2cose4 22( 24 - (M4- 21) P 2Cose4 - sine4 cose 4[A] = 0
aY24

and 2
Pand 2y4M4  4- 2)cose 4
P4 I 4* 2(Mcos2 4 -1) + 24  4M2cos4

2sine 2P 2P sine4
+S 4  3  (M4cos 1) (AI-11)

Sy24  s3 s23 24

-P y2sine4 - [A) cos24= 0



TR 169 Page AI-4

Equations (AI-10) and (AI-11) both are of the form

P,f(e,M) + g(e,M,[A]) = 0 (AI-12)

An iterative procedure for the solution of the above system proceeds as

follows:

(a) A value for P4 is assumed (i.e., P4 = P3 + Ps3 As34 )'

(b) Application of the s-momentum, energy and species equa-

tion along 3-4 -* q4, T4, ai 4 M4 '

(c) Equation (AI-10) + e4 by an iterative procedure.

(d) Equation (AI-11) - P4 which is compared to the value of
P4 assumed.

If IP4-P4 > z, where E is some specified tolerance, a new value of P4 is
assumed and steps (b), (c) and (d) are repeated until convergence is obtained.

The calculation y points 6, 8 and 10 are performed in an analogous fashion, until
the lower boundary 9-10 is reached. In the direct problem 9-10 may be a wall,
axis or lower matching streamline (in which case a P-e relation exists along
the C+ characteristic 10-A), while in the inverse problem 9-10 must be a wall.
The direct problem requires that the deflection angle e10 obtained by the sub-
sonic solution match the wall angle ew10 , = 0 if 9-10 is an axis, or satisfy
the compatibility relation along A-10. If it does not, the value of es2 must
be iterated upon and the entire system solved repeatedly until the value of es2
that satisfies the lower boundary conditions is obtained. In the inverse
problem, the value of 610 determined by the subsonic solution yields the shape
of the lower boundary and no iteration is required.
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APPENDIX II

MARCHING SCHEME - POLYNOMIAL METHOD

In the subsonic region, the pressure distribution and flow inclination are

expressed by the following power series in y:

p(x,y) = PO(X) + P1(X) y + P2(x) 2 + P3(x ) y (AII-1)

e(x,y) = eo0(x) + el(x) y + e2 (x) 2* (AII-2)

Referring to Figure (II-1), the subsonic region is bounded by the two stream-

lines D1Cland D2C2 along which the Mach number has low supersonic values.

The subsonic region is matched to the supersonic regions employing the

viscous characteristic compatibility relations along the characteristics

BC2 and AC1. The analysis developed also considers the possibility that the

subsonic region extends to an axis or lower wall.

The derivatives Ps and es at points D1 and D2 are calculated employing Equa-

tions (AI-1) and (AI-2). The following procedure is used to calculate the

subsonic region.

Step 1. A value for p is assumed (or prescribed for inverse

problem). .1

PC1 1 2 sD1 sC1

Step 3. The compatibility relation applied along the C+ character-

istic AC1 yields eC .

Step 4. e = 2_ ( D) -s As C D sC 1 1  D1

* Y = y - YL where L denotes the lower subsonic boundary. If the lower bound-
ary is an axis of symmetry, YL =0O and the polynomials take the form

P = PO +P2y2 + Py4 and e(y) = ely + 3y3
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Note, that if the lower subsonic boundary is a wall or axis, the flow de-

flection eC1 is known and no compatibility relation is required.

Step 5. With the pressure gradient and streamline location

known, the velocity, temperature and species mass

fraction may be obtained at C1 (or any mesh point I)

by using the explicit finite difference formulation

of Equations (5), (7) and (8).

Step 6. Knowing Ps and es at point C1, Equations (AI-1) and AI-2)

may be inverted to yield (P y) and (6 )
1 C1

Step 7. Since the e(y) polynomial contains three unknowns, and

two boundary conditions are already known at C1 (e and ey),

only one value of e at the upper boundary C2 will be con-

sistent with both the e polynomial and the modified con-

tinuity equation**. A local iteration to find this value

of e proceeds as follows:

Step 7a. A value of eC2 is assumed.

Step 7b. The coefficients e0, e1 and e2 at yC e=e C and
1 1

e=eYC and at yC ,2 e=C2. The a polynomial is then

1 2

-2
e(y) = e0 + eI + e2 2

Step 7c. e - 2 0e ) .0

2 (ec 2 2

**(M2 -1) Ps + yPM2 n = A (AII-3)

where A is described by Equation (AI-3).
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Step 7d. The compatibility relation along characteristic

BC2 yields P

2 ) P

Step 7e. Ps 2  2D2  D2

Step 7f. Using the modified continuity equation

A - (M2-1) Ps
e = [ ]
nC2  yPM2  C

Step 7g. Since - = cose -+ sine eyC cose339 2 C2

e + sine
nC2  C2 sC2

Step 7h. But using the polynomial e(y)

e =1 + 2e2y
2

Step 7i. The values of eYC2 and eC 2 must be identical

to within a specified tolerance. If they do

not agree, a new value of 6C2 is assumed and

Steps (7b) - (7h) are repeated. Convergence is

obtained by use of a linear error extrapolation

procedure.

Step 8. Flow properties are computed at C2.

Step 9. P n is computed using the normal momentum equation

C2 nC (pM2) e
nc2 

)C2  C2

Step 10. P C2 is computed PYC2 = coseC2 Pn 2 + sinec2 PC 2
2 nC2 C 2 5C2
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Step 11. The coefficients of the pressure polynomial P(y) between

C1 and C2 can now be evaluated using the conditions

at , P=PC1 and P =P
1C1

at yC2' P=P2 and P =PC2 C yC

yielding P(y) = PO + P1  2 + P3 3

Step 12. The interior mesh points I between C1 and C2 are evaluated

as follows.

Step 12a. A value of yy is assumed.

Step 12b. Using the polynomial P(y) and e(y), PI and el

are obtained.

Step 12c. Flow properties are obtained using the stream-

line relations.

Step 12d. The mass flow at I is evaluated by

tI = ~1-1 + [(pq cose) 1-1 + (pq cose)y]

(y 1+j 1+j,(y - y l-)

1+j

Step 12e. Since II is a streamline, pI should equal p1.

If it does not agree to within a specified

tolerance, a new value of yl is assumed and the

process is iterated until convergence.
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Step 13. The overall mass flow between C1C 2 is compared to that

between D1D2. If the mass flow is not correct the en-

tire process (Steps (1) - (13).) must then be repeated

with a new value of P5  for the direct problem.

Generally, convergence was obtained with under five iterations, except when

the subsonic flow field is close to sonic in a mass averaged sense. This

situation occurs in the vicinity of the supersonic to subsonic transition

and again in the vicinity of the subsonic to supersonic transition. In

these critical regions, the error curve may yield two colutions (supersonic

and subsonic branch) in which case knowledge of downstream conditions indicates

which branch is physically correct. For arbitrary initial conditions, the

flow does not necessarily undergo a smooth super to subsonic transition and

the matching Mach number tends to be an important factor in effecting this

transition. The transition from sub to supersonic flow (i.e., closing the

sonic line) poses an even greater problem.

In this region, the flow may choke, indicating that a shock is required in

the initial super to sub transition to allow the mass flow to pass. If

the subsonic region is bounded by a wall on one side, when choking occurs,

the wall may be opened to allow passage of the correct mass flow. If the

subsonic region is embedded in the flow field, then the wall would have to

be modified upstream of the choked station to allow passage of the proper

mass flow. In the inverse case, one of the subsonic boundaries would have

to be a wall and Ps prescribed at one boundary would yield the wall shape

at the other boundary.

*16
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APPENDIX III

STEP SIZE AND GRID SPACING CRITERION

A. Step Size Criterion - Limitations on the marching step Ax result

from characteristic criterion, parabolic stability criterion associated with

an explicit difference scheme and criterion associated with the solution of

the finite rate chemistry. The criterion associated with characteristics is

the Courant-Friedrichs-Lewy condition which states that "the numerical domain

of dependence of a difference scheme should include the domain of dependence

of the differential equation or else, convergence is not always possible" (Re-

ference 9). This criterion is numerically satisfied by intersecting all free

running characteristics'emanating from grid points of the supersonic portions

of the initial profile and obtaining the intersection yielding the minimum

forward marching step axchar as shown in Figure (III-1).

The stability criterion associated with an explicit parabolic marching scheme

has been discussed extensively in the literature (Reference 10), based upon

equations with constant coefficients. The solution of the s-momentum, energy

and species diffusion equation are all solved by an explicit scheme using the

grid depicted in Figure (111-2) where the spacing Ay between grid points is

not necessarily uniform. Linearized stability criterion imposes the condition:

21 L ax
.eAx 2 1 (AIII-1)

pq Pr Re Ay.

Then the parabolic step size is determined by applying Equation (AIII-1) at each

grid point I and selecting the minimum Axvis. The Ay employed in the equation

is the average Ay of the interval I-1 to I+1; i.e., AyI = -, (y 1l+AY 2). Then

P Re
Axvis 2 L [p q1 Ay2] (AIII-2)

e  mmn

It should be noted that the hyperbolic (characteristic) stability criterion is

determined with the diffusive terms neglected and the parabolic (diffusive)

stability limit is determined with the-convective terms neglected. It had
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been thought that the smaller of these two step sizes should be taken as the

stability limit of the system as noted in Reference (2), but it was also

pointed out in this reference that use of this criterion still led to in-

stabilities in some cases. A superposition of the diffusive and convective

terms may yield more restrictive stability limits than choosing the smaller

of the step sizes. As pointed out by Cheng in Reference (11), the appropriate

combined "hyperbolic-parabolic" criterion is

Ax < --
-2 1 12- + ---

AXchar aXvis

The finite rate hydrogen-air chemistry employed in this analysis is described
-7

in References (12) and (13) and uses a fixed time interval At = 4.*10 7 seconds.

Hence, the chemical step size is

q *U
ax - At

chem rjet

Since the chemistry is uncoupled based on the procedure developed in Reference

(14) and described for viscous-characteristics in Reference (2), several chem-

ical steps may be taken in one overall marching step. The number of chemical

steps to be allowed in a marching step is left as a user option and is depend-

ent on the grid spacing in the transverse direction (Ay spacing). Note that

when mixing is initiated, a very small grid spacing Ay is required, hence the

overall marching step may be significantly smaller than a chemical step, while

far downstream, when the Ay is substantially larger, the chemistry criterion

may dominate the overall step size.

B. Grid Spacing in The Transverse Direction - The program developed

can analyze a wide variety of flow situations. The lower boundary may be a

wall or an axis, while the upper boundary may be a wall or constant pressure

surface. The initial profile may be entirely nonuniform, in which case all

grid points must be input initially or may have: (a) uniform jet, uniform

air (b) uniform jet, nonuniform air (c) nonuniform jet, uniform air. In each
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of these cases, the jet-air pressure may be balanced or unbalanced. If the

pressure is unbalanced, the jet underexpansion interaction is calculated.

For flow with an axis or straight centerbody, only the jet properties, an

initial Ay based on mixing considerations, and the maximum number of points

on the jet side have to be input for a uniform jet (cases a or b). As mixing

progresses, the program adds points at Ay on the jet side, until the maximum

number of jet points is obtained at which point ay is doubled, and alternate

points on the jet side are dropped. This process is continued until the wall

or axis is reached. Similarly, if the airstream is uniform (case a or c) and

the upper boundary is such that it sends no waves into the flow field, the

same procedure applies on the air side. For the unbalanced pressure case, jet

points are added below the Prandtl-Meyer region and the free stream side of

the shock serves as the upper boundary if the air is uniform. As the distance

between the underexpansion shock and the mixing zone increases, mesh points

are automatically added in this region.
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APPENDIX IV

VISCOSITY MODEL

The turbulent eddy viscosity model referred to as the "Ferri-Kleinstein" model

is described in References (18) and (19). This model has been incorporated as

a subroutine in the developed program and assumes an eddy viscosity variation in

the axial direction only. Incorporation of a different model employing only an

axial variation simply involves changing the viscosity subroutine while incorpora-

tion of a model employing both an axial and radial variation can be easily ac-

complished by minor program modifications.

Defining x* as the length of the potential core,

= K X Re (PU)max - (PU)min + K3  (AIV-I)

for x < x*

and

= K2 r Re (Pu)Max - (pu)min  + K4 (AIV2)

for x > x*

where r, is the radial distance to the point in the jet where p = ((pU)ma +

(pU)min).

For a uniform jet and external stream the term (pu)max - (pu)min is replaced by

the appropriate jet and external stream properties, as depicted in Figure (IV-1).

For an underexpanded jet, the viscosity is computed on the basis of the region

below the bounding shock. Due to burning the difference between !(pu) et and (Pu)eXit

may be less than that in the combustion zone in which case the max difference is

obtained as depicted in Figure (IV-2). The coefficients K1, K2, K3 and K4,and the

potential core length X* are input items in the program.
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